A Possible Failure Mode for Leeward Mooring Lines on a Floating Storage Unit

Author(s):  
Vegard Aksnes ◽  
Terje Nybø ◽  
Halvor Lie

The floating storage unit Navion Saga at the Volve field in the North Sea suffered from two mooring line breaks in steel wire ropes in 2011. Investigations of the broken ropes indicated that a possible failure mechanism could be high stresses near the wire socket induced by large bending moments in leeward mooring lines. The scope of the current study has been to make a numerical model capable of capturing such behaviour of the steel wire rope and to check if the minimum bending radius could be as low as the rope’s specified minimum bending radius. The numerical model has revealed a possible failure mechanism. The connecting link plate between the upper chain segment and the upper wire segment lies initially on the seabed. When lifted off the seabed, the link plate and the wire socket will fall to the seabed at a higher speed than the upper wire segment. A transverse wave in mooring line plane propagating towards fair-lead is generated when the wire socket hits the seabed. The wave leads to large curvature in the wire near the socket. Sensitivity studies of the governing parameters have been performed to assess the uncertainties of the numerical model. A modified system is presented and it is shown that the phenomenon which is likely to have caused failure in the original system will not occur for the modified one.

1975 ◽  
Vol 97 (3) ◽  
pp. 1046-1052 ◽  
Author(s):  
Robert C. Rupe ◽  
Robert W. Thresher

A lumped mass numerical model was developed which predicts the dynamic response of an inextensible mooring line during anchor-last deployment. The mooring line was modeled as a series of concentrated masses connected by massless inextensible links. A set of angles was used for displacement coordinates, and Lagrange’s Method was used to derive the equations of motion. The resulting formulation exhibited inertia coupling, which, for the predictor-corrector integration scheme used, required the solution of a set of linear simultaneous equations to determine the acceleration of each lumped mass. For the selected cases studied the results show that the maximum tension in the cable during deployment will not exceed twice the weight of the cable and anchor in water.


Author(s):  
Biao Su ◽  
Karl Gunnar Aarsæther ◽  
David Kristiansen

This paper presents a numerical model intended to simulate the mooring force and the dynamic response of a moored structure in drifting ice. The mooring lines were explicitly modeled by using a generic cable model with a set of constraint equations providing desired structural properties such as the axial, bending, and torsional stiffness. The six degrees-of-freedom (DOF) rigid body motions of the structure were simulated by considering its interactions with the mooring lines and the drifting ice. In this simulation, a fragmented ice field of broken ice pieces could be considered under the effects of current and wave. The ice–ice and ice–structure interaction forces were calculated based on a viscoelastic-plastic rheological model. The hydrodynamic forces acting on the floating structure, mooring line, and drifting ice were simplified and calculated appropriately. The present study, in general, demonstrates the potential of developing an integrated numerical model for the coupled analysis of a moored structure in a broken ice field with current and wave.


Author(s):  
Dongsheng Qiao ◽  
Changxin Zheng ◽  
Binbin Li ◽  
Jinping Ou ◽  
Gangjun Zhai

In the deepwater exploitation of oil and gas, the replacement of polyester rope for the wire in chain-wire-chain mooring line is proved to be fairly economic. Previous studies are mainly conducted to hydrodynamic analysis and dynamic response calculation, but there are few studies on the fatigue damage analysis of hybrid mooring line. Take the mooring system of a Spar platform as the research object, and the multi-component mooring lines are usually made up of chain-wire-chain. The representative mooring line has been considered while other conditions are kept unchanged, and top end tension-static offset characteristic curve of the two mooring lines are consistent as much as possible, meanwhile the polyester rope is adopted as the substitute for the wire, then the comparative calculation on fatigue damage of deepwater hybrid mooring line is carried on. The analysis of Spar platform response is carried out in which the wave force is calculated under diffraction theory. After the establishment of two-dimensional nonlinear finite element dynamic model of the hybrid mooring line, the calculation on stiffness of the hybrid mooring line is accomplished through the iterative method based on the empirical formula proposed by Del Vecchio in 1992. The mooring line and seabed interaction is based on the hypothesis of rigid seabed. The fluid drag force and inertia force on the mooring line are calculated according to the Morrison formula. The dynamic analysis is executed through time-domain nonlinear finite element method accounting for the response of the Spar platform which is calculated as above. The stress time histories of the hybrid mooring line in each short-term sea state of South China Sea area are calculated, and then the rain flow counting method is employed to obtain the fatigue load spectrum in each short-term sea state. The Miner linear cumulative law model is used to compare the fatigue damage of the hybrid mooring lines in long-term sea state which consists of tens of short-term sea states. The results show that the using of polyester rope as the substitute for the wire can significantly improve the fatigue resistance.


2021 ◽  
Vol 9 (4) ◽  
pp. 417
Author(s):  
Ivan Ćatipović ◽  
Neven Alujević ◽  
Smiljko Rudan ◽  
Vedran Slapničar

Synthetic fibre mooring lines are used as an alternative to traditional steel wire ropes due to their higher strength to weight ratio. Benefits are also found in relative ease of handling, and therefore the marine industry has largely accepted this type of mooring line. By rules and regulations, the design of mooring lines should be based on a coupled dynamic analysis of a particular mooring system and moored vessel. This approach incorporates damping and inertial forces (i.e., hydrodynamic reactions) acting directly on the mooring lines due to their motion through the seawater. On the basis of the outer diameter of the synthetic fibre rope, the Morison equation gives estimations of the mooring line hydrodynamic reactions. In comparison to the traditional steel wire ropes, the synthetic mooring lines usually have relatively larger elongations and consequently larger reductions of the outer diameter. Furthermore, the lower diameter certainly leads to reduced values of damping and added mass (of mooring lines) that should be considered in the coupled model. Therefore, the aim of this study was to develop a new numerical model that includes diameter changes and axial deformations when estimating the hydrodynamic reactions. The development of the model is carried out with a nonlinear finite element method for mooring lines with the assumption of large three-dimensional motions. The obtained results show the effectiveness of the newly developed model as a more accurate approach in calculation of hydrodynamic reactions.


2021 ◽  
Vol 7 (1) ◽  
pp. 019-032
Author(s):  
Umana, Emediong Christopher ◽  
Tamunodukobipi Daniel Tamuno-Iduabia ◽  
Inegiyemiema Morrison

The use of FPSO for deep sea exploration of hydrocarbon resources has been on trend. Thus, there is a need for ensuring safety with regards to station keeping. However, there are mainly two materials used for mooring line fabrication: Synthetic and Steel. Polyester rope is regarded as a good synthetic option for deep water mooring application. This is as a result of its durability in cyclic tensile fatigue loading. This work compares the end forces between the proposed polyester (with top and bottom chains) rope with that of steel-wire rope from existing systems. From the dynamic analysis of the mooring lines with joint criteria for extremes dominated sea states, the maximum value of the end tension for wire rope is 1668.5722 kN of S-1 (Starboard-1) and the total force is 1668.5799 kN. Conversely for polyester rope, the maximum value of the end tension is 1130.0381 kN of S-1 and the total force is 1130.0511 kN. This result shows that the force and tension in polyester rope are lower than those of steel wire rope: indicating the effects of reduced vertical (gravity) forces of mooring rope on the FPSO with an associated improvement in horizontal restoring force. The substantial decrease in rope weight reduces the complexity of installation, and increases the vessel’s payload. The latter enhances its capaciousness for crude oil cargo which consequently boosts its economic viability. Also, the fatigue life of the polyester rope is more than that of steel rope because of its low frequency load.


Author(s):  
Biao Su ◽  
Karl Gunnar Aarsæther ◽  
David Kristiansen

This paper presents a numerical model intended to simulate the mooring load and the dynamic response of a moored structure in drifting ice. The mooring lines were explicitly modelled by using a generic cable model with a set of constraint equations providing desired structural properties such as the axial, bending and torsional stiffness. The 6 degrees-of-freedom (DOF) rigid body motions of the structure were simulated by considering its interactions with the mooring lines and the drifting ice. In this simulation, a fragmented ice field of broken ice pieces can be considered under the effects of current and wave. The ice-ice and ice-structure interaction forces were calculated based on a viscoelastic-plastic rheological model. The hydrodynamic forces acting on the floating structure, mooring line and drifting ice were simplified and calculated appropriately. The present study, in general, demonstrates the potential of developing a full numerical model for the coupled analysis of a moored structure in a broken ice field with current and wave.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


Sign in / Sign up

Export Citation Format

Share Document