scholarly journals Numerical Study of a Moored Structure in Moving Broken Ice Driven by Current and Wave

Author(s):  
Biao Su ◽  
Karl Gunnar Aarsæther ◽  
David Kristiansen

This paper presents a numerical model intended to simulate the mooring force and the dynamic response of a moored structure in drifting ice. The mooring lines were explicitly modeled by using a generic cable model with a set of constraint equations providing desired structural properties such as the axial, bending, and torsional stiffness. The six degrees-of-freedom (DOF) rigid body motions of the structure were simulated by considering its interactions with the mooring lines and the drifting ice. In this simulation, a fragmented ice field of broken ice pieces could be considered under the effects of current and wave. The ice–ice and ice–structure interaction forces were calculated based on a viscoelastic-plastic rheological model. The hydrodynamic forces acting on the floating structure, mooring line, and drifting ice were simplified and calculated appropriately. The present study, in general, demonstrates the potential of developing an integrated numerical model for the coupled analysis of a moored structure in a broken ice field with current and wave.

Author(s):  
Biao Su ◽  
Karl Gunnar Aarsæther ◽  
David Kristiansen

This paper presents a numerical model intended to simulate the mooring load and the dynamic response of a moored structure in drifting ice. The mooring lines were explicitly modelled by using a generic cable model with a set of constraint equations providing desired structural properties such as the axial, bending and torsional stiffness. The 6 degrees-of-freedom (DOF) rigid body motions of the structure were simulated by considering its interactions with the mooring lines and the drifting ice. In this simulation, a fragmented ice field of broken ice pieces can be considered under the effects of current and wave. The ice-ice and ice-structure interaction forces were calculated based on a viscoelastic-plastic rheological model. The hydrodynamic forces acting on the floating structure, mooring line and drifting ice were simplified and calculated appropriately. The present study, in general, demonstrates the potential of developing a full numerical model for the coupled analysis of a moored structure in a broken ice field with current and wave.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


1975 ◽  
Vol 97 (3) ◽  
pp. 1046-1052 ◽  
Author(s):  
Robert C. Rupe ◽  
Robert W. Thresher

A lumped mass numerical model was developed which predicts the dynamic response of an inextensible mooring line during anchor-last deployment. The mooring line was modeled as a series of concentrated masses connected by massless inextensible links. A set of angles was used for displacement coordinates, and Lagrange’s Method was used to derive the equations of motion. The resulting formulation exhibited inertia coupling, which, for the predictor-corrector integration scheme used, required the solution of a set of linear simultaneous equations to determine the acceleration of each lumped mass. For the selected cases studied the results show that the maximum tension in the cable during deployment will not exceed twice the weight of the cable and anchor in water.


Author(s):  
Toshifumi Fujiwara

The author proposed the Vortex-induced Motion (VIM) simulation method of a semi-submersible type offshore floating structure using the wake oscillator model based on the potential theory and model test data. This method is easy to use for the time-domain simulation of the VIM amplitude, that is in-line, transverse and yaw motions, of the semi-submersible floater in case of being demented mooring safety assessment of that. The simulation method presented in this paper was modified the single circular floater simulation method with the wake oscillator model for a semi-submersible floater. Some empirical parameters, obtained from the systematic model tests used many semi-submersible floaters, are only decided from external form of the semi-submersible floaters, that is the column / lower hull ratio etc. This simulation method is able to indicate general VIM trend and to be used for the assessment of mooring lines safety in the design stage. Using the VIM amplitude simulation, fatigue damage of mooring lines on one sample semi-submersible floater was investigated as an example.


Author(s):  
Giuseppe Roberto Tomasicchio ◽  
Alberto Maria Avossa ◽  
Luigia Riefolo ◽  
Francesco Ricciardelli ◽  
Elena Musci ◽  
...  

In the present paper, the dynamic response of a spar buoy wind turbine under different wind and wave conditions is discussed. Physical model tests were performed at the Danish Hydraulic Institute (DHI) off-shore wave basin within the EU-Hydralab IV Integrated Infrastructure Initiative. The OC3-Hywind spar buoy was taken as reference prototype. A spar buoy model, 1:40 Froude-scaled, was tested using long crested regular and irregular waves, orthogonal (0 degrees) and oblique (20 degrees) to the structure. Here the results concerning regular waves, with incidence orthogonal to the structure, are presented; the selected tests considered rotating and non-rotating blades. Measurements of displacements, rotations, accelerations, forces response of the floating structure and at the mooring lines were carried out. Based on the observed data, FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy’s (DOE’s), National Renewable Energy Laboratory (NREL), was calibrated and verified. The numerical model takes into account the wave induced response and the effects of the mooring lines on the overall system. The adopted spar buoy has three equally spaced mooring lines that were modelled as quasi-static taut or catenary lines through MAP++ (static module) and MoorDyn (dynamic module) in the FAST simulation tool. The tensions along the fairleads of the three mooring lines were examined. At the end of the calibration procedure, the numerical model was successfully used to simulate the dynamic motions of the floating wind turbine under combinations of wind and sea states for the selected wave attacks. All data from the DHI tests were converted to full scale using Froude scaling before being analyzed.


Author(s):  
Vegard Aksnes ◽  
Terje Nybø ◽  
Halvor Lie

The floating storage unit Navion Saga at the Volve field in the North Sea suffered from two mooring line breaks in steel wire ropes in 2011. Investigations of the broken ropes indicated that a possible failure mechanism could be high stresses near the wire socket induced by large bending moments in leeward mooring lines. The scope of the current study has been to make a numerical model capable of capturing such behaviour of the steel wire rope and to check if the minimum bending radius could be as low as the rope’s specified minimum bending radius. The numerical model has revealed a possible failure mechanism. The connecting link plate between the upper chain segment and the upper wire segment lies initially on the seabed. When lifted off the seabed, the link plate and the wire socket will fall to the seabed at a higher speed than the upper wire segment. A transverse wave in mooring line plane propagating towards fair-lead is generated when the wire socket hits the seabed. The wave leads to large curvature in the wire near the socket. Sensitivity studies of the governing parameters have been performed to assess the uncertainties of the numerical model. A modified system is presented and it is shown that the phenomenon which is likely to have caused failure in the original system will not occur for the modified one.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8303
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chengyuan Wang ◽  
Yuangang Tu ◽  
Zhenqing Liu

Floating wind turbine vibration controlling becomes more and more important with the increase in wind turbine size. Thus, a novel three-bifurcated mooring system is proposed for Spar-type floating wind turbines. Compared with the original mooring system using three mooring lines, three-bifurcated sub-mooring-lines are added into the novel mooring system. Specifically, each three-bifurcated sub-mooring-line is first connected to a Spar-type platform using three fairleads, then it is connected to the anchor using the main mooring line. Six fairleads are involved in the proposed mooring system, theoretically resulting in larger overturning and torsional stiffness. For further improvement, a clump mass is attached onto the main mooring lines of the proposed mooring system. The wind turbine surge, pitch, and yaw movements under regular and irregular waves are calculated to quantitatively examine the mooring system performances. A recommended configuration for the proposed mooring system is presented: the three-bifurcated sub-mooring-line and main mooring line lengths should be (0.0166, 0.0111, 0.0166) and 0.9723 times the total mooring line length in the traditional mooring system. The proposed mooring system can at most reduce the wind turbine surge movement 37.15% and 54.5% when under regular and irregular waves, respectively, and can at most reduce the yaw movement 30.1% and 40% when under regular and irregular waves, respectively.


2021 ◽  
Vol 9 (9) ◽  
pp. 960
Author(s):  
Chun Bao Li ◽  
Mingsheng Chen ◽  
Joonmo Choung

It is essential to design a reasonable mooring line length that ensures quasi-static responses of moored floating structures are within an acceptable level, and that reduces the cost of mooring lines in the overall project. Quasi-static responses include the equilibrium position and the line tension of a moored floating structure (also called the mean value in a dynamic response), etc. The quasi-static responses derived by the classic catenary equation cannot present mooring–seabed interaction and hydrodynamic effects on a mooring line. While a commercial program can predict reasonable quasi-static responses, costly modeling is required. This motivated us to propose a new method for predicting quasi-static responses that minimizes the mechanical energy of the whole system based on basic geometric parameters, and that is easy to implement. In this study, the mechanical energy of moored floating structures is assumed to be the sum of gravitational–buoyancy potential energy, kinetic energy induced by drag forces, and spring potential energy derived by line tension. We introduce fundamental theoretical background for the development of the proposed method. We investigate the effect of quasi-static actions on mooring response, comparing the proposed method’s results with those from the catenary equation and ABAQUS software. The study reveals the shortcomings of the catenary equation in offshore applications. We also compare quasi-static responses derived by the AQWA numerical package with the results calculated from the proposed method for an 8 MW WindFloat 2 type of platform. Good agreement was drawn between the proposed method and AQWA. The proposed method proves more timesaving than AQWA in terms of modeling of mooring lines and floaters, and more accurate than the catenary equation, and can be used effectively in the early design phase of dimension mooring lengths for moored floating structures.


Author(s):  
Zhiling Li ◽  
Carlos Llorente ◽  
Cheng-Yo Chen ◽  
Chang Ho Kang ◽  
Edmund Muehlner ◽  
...  

For the global performance analysis of a floater, the traditional semi-coupled method models mooring lines/risers as nonlinear massless springs and ignores 1) the inertial effects from mooring lines/risers, 2) the current and wave load effects on mooring lines/risers, and 3) the dynamic interaction between mooring lines/risers and the floater. However, these effects are deemed critical for deepwater and ultra deepwater floating structures as they may have a significant impact on the floaters’ motions and mooring line/riser tensions. This paper presents the development and verification of a time-domain nonlinear coupled analysis tool, MLTSIM-ROD, which is an integration of a recently developed 3D rod dynamic program, ROD3D, with the well-calibrated floater global performance analysis program, MULTISIM (Ref [9]). The ROD3D was developed based on a nonlinear finite element method and merged with MULTISIM by matching the forces and displacements of mooring lines/risers with the floater at their connections. MLTSIM-ROD can thus predict the floater’s large displacement/rotation motions and mooring line/riser tensions including all the coupled effects between the floater and mooring lines/risers. In this paper, global performance predictions for a SPAR in the Gulf of Mexico in deepwater were carried out using MLTSIM-ROD. The results were then verified with those from other coupled analysis programs. The paper also presents the results of motions and mooring line/riser tensions of the SPAR using both the coupled and semi-coupled methods. The results from the coupled and semi-coupled analyses indicate that the floater’s motions and mooring line/riser tensions could be significantly influenced by the dynamic interactions between the floater and mooring lines/risers. Hence, the coupled method needs to be considered for deepwater floating structures.


Sign in / Sign up

Export Citation Format

Share Document