Parametric Roll of High Speed Ships in Regular Waves

Author(s):  
Hisham Moideen ◽  
Abhilash Somayajula ◽  
Jeffrey M. Falzarano

Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behavior of the time-varying restoring arm or metacentric height. This assumption enables modeling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modeling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.

Author(s):  
Jae-Hoon Lee ◽  
Yonghwan Kim ◽  
Min-Guk Seo

In the present study, the added resistance of a containership in parametric roll motion is investigated. The numerical simulation is carried out using a three dimensional Rankine panel method along with the weakly nonlinear formulation. The added resistance is evaluated by a near-field method, namely, the direct integration of the 2nd-order pressure on a body surface. To calculate the component resulting from the large-amplitude roll motion, the higher-order restoring and Froude-Krylov forces on wetted hull surfaces are taken into account. With or without parametric roll in regular waves, the components of added resistance classified with respect to integral terms are compared to figure out the important of each term. Through the investigation, the correlation between the added resistance and parametric roll is derived from coupling and decoupling the components of roll motion and vertical motions.


2017 ◽  
Author(s):  
Anne Fullerton ◽  
Charles Weil ◽  
Evan Lee ◽  
Minyee Jiang ◽  
Fredrick Stern ◽  
...  

Current structural design methods for high speed naval craft rely heavily on empirical methods. Though these methods have been employed reliably for a number of years, it is likely that an unknown level of conservatism exists in the prediction of impact loads. A better physical understanding of the dynamic response of high speed craft in seas would allow for increased structural optimization. The publicly releasable hull form Naval Surface Warfare Center Carderock Division (NSWCCD) Model 5365 (R/V Athena) was chosen to facilitate release of results to various computational teams. Model 5365 was tested in calm water, regular waves, and irregular waves. After reviewing data from the first test in 2014, it was determined that the model should be modified to enable towing from the longitudinal center of gravity. Model 5365 was then modified and re-tested using with added calm water speeds, and additional wave conditions. Calm water results from this test are presented with uncertainty analysis for resistance, heave, and trim.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Parviz Ghadimi ◽  
Abbas Dashtimanesh ◽  
Yaser Faghfoor Maghrebi

Nowadays, most of the dynamic research on planing ships has been directed towards analyzing the ships motions in either 3-DOF (degrees of freedom) mode in the longitudinal vertical plane or in 3-DOF or 4-DOF mode in the lateral vertical plane. For this reason, the current authors have started a research program of describing the dynamic behavior of planing ships in a 6-DOF mathematical model. This program includes the developing of a 6-DOF computer simulation program in the time domain. This type of simulation can be used for predicting the response of these planing vessels to the environmental disturbances during high-speed sailing. In this paper, the development of the mathematical model will be presented. Furthermore, a discussion will be offered about the use of these static contributions in a time domain simulation for modeling the behavior of planing crafts in regular waves.


Author(s):  
Johanna Marie Daniel ◽  
Tuomas Romu ◽  
R. U. Franz von Bock und Polach ◽  
Moustafa Abdel-Maksoud ◽  
Toni Skogström

Abstract Following the development of low friction hull coatings and azimuthing propulsion for icebreaking vessels, the development of auxiliary systems for reducing ice resistance fell from focus of research. One of these systems is comprised of active heeling tanks which induce a forced roll motion on the icebreaker. Today it is not fully understood how effective or even useful such systems would be for the icebreaking performance in combination with a modern icebreaking hull form. In this study, the impact of active heeling systems on level ice resistance is investigated by performing ice model tests with an icebreaker representing the latest design generation. The level ice thickness used in the model tests corresponds to the maximum continuous icebreaking capability of the evaluated vessel in multi-year ice conditions. Additionally, a calculation method is developed to predict the impact of forced roll motion on the ice resistance. The calculated prediction is evaluated against the model-scale data. Finally, the effectiveness of the active heeling system is evaluated from an engineering perspective: does the active heeling system reduce the power demand, or would the same result be achievable by increasing the propulsion power accordingly. It was found that the roll motion impacts the ice resistance in level ice. The main influence in this regard lies with the tank volume and metacentric height of the icebreaker. Additionally, it was observed that an optimum heel angle dependent on the ice condition can be determined which is not necessarily the highest one achievable. The case study predicts a reduced power demand for a modern icebreaker hull form in harsh ice conditions.


Author(s):  
Alptunc Comak ◽  
Orkun Ozsahin ◽  
Yusuf Altintas

High-speed machine tools have parts with both stationary and rotating dynamics. While spindle housing, column, and table have stationary dynamics, rotating parts may have both symmetric (i.e., spindle shaft and tool holder) and asymmetric dynamics (i.e., two-fluted end mill) due to uneven geometry in two principal directions. This paper presents a stability model of dynamic milling operations with combined stationary and rotating dynamics. The stationary modes are superposed to two orthogonal directions in rotating frame by considering the time- and speed-dependent, periodic dynamic milling system. The stability of the system is solved in both frequency and semidiscrete time domain. It is shown that the stability pockets differ significantly when the rotating dynamics of the asymmetric tools are considered. The proposed stability model has been experimentally validated in high-speed milling of an aluminum alloy with a two-fluted, asymmetric helical end mill.


1974 ◽  
Vol 11 (04) ◽  
pp. 383-392
Author(s):  
David R. Pedrick

The difference in the effects of rough water on similar sailing yachts has been one of the intriguing puzzles that sailors, designers, and researchers have long tried to understand. It is not uncommon for two yachts of equal performance in smooth-sea conditions to have their speed or pointing ability reduced by different amounts when encountering waves. To investigate the causes of such behavior, it is important to have a rational procedure to analyze how changes in hull form, weight distribution, rig, and other design features affect the speed and motions of sailing yachts. This paper discusses the relationship of wind to rough water and of motions and added resistance to wave length and height. It then describes a procedure to predict motions, sailing speed, and speed-made-good to windward in realistic windward sailing conditions. The procedure utilizes results of heeled and yawed model tests of 12-metre yachts in oblique regular waves to predict performance in a Pierson-Moskowitz sea state corresponding closely to the equilibrium true wind speed.


1988 ◽  
Vol 25 (04) ◽  
pp. 239-252
Author(s):  
G. Robed Lamb

Even though in 1987 there were only a dozen SWATH (smali-waterplane-area twin-hull) craft and ships afloat around the world, word of their markedly superior seakeeping performance is spreading rapidly. The number of SWATH vessels is likely to double within five years. As in many other areas of technology, the United States and Japan are the acknowledged leaders in the development and practical application of the SWATH concept. This paper reviews the characteristics of existing SWATH craft and ships from the standpoint of the stated seakeeping objective. Hull form differences between four SWATH craft and ships, including the Navy's SSP Kairnalino, are analyzed and interpreted. Important considerations for the early-stage design of a SWATH ship are discussed. Differences in the range of feasible hull form geometries for coastal areas and unrestricted ocean operations, and for low-speed versus moderately high-speed applications, are pointed out.


Sign in / Sign up

Export Citation Format

Share Document