Experimental Validation of a Numerical Model for a Dry-Tree Semisubmersible in Benign Environments

Author(s):  
Bruce Martin ◽  
Oriol Rijken ◽  
Kent Davies

The offshore industry has spent the last several years developing semisubmersible platforms capable of supporting both drilling and production activities. The production trees are located on top of the top tensioned risers (TTRs) on a Dry Tree Semisubmersible. A key challenge in the design of these vessels is to reduce the heave motion as much as possible to enable the use of state-of-the-art riser tensioners. A model test campaign was executed as part of the developmental program. The primary objective of this campaign was to improve the accuracy of the numerical tools to be used in the design process. Riser tensioners are typically hydro-pneumatic devices, with a nonlinear tension-stroke relationship. A riser tensioner was developed at model scale which had a similar nonlinear behavior to the prototype. Examining the effect of this tensioner on the global motions was an additional objective of this test campaign. The techniques used to model this nonlinear spring is described, and its effect on global motions investigated. A key challenge in model testing platforms intended for ultra-deep water (e.g. greater than 7000 ft) is the modeling of the mooring and riser system. The premise for the design of the model mooring system is 1.) maintain as best as possible the force-offset relationship of the mooring lines and 2.) be able to describe the model test configuration in the numerical tools to be used for global design. The near taut behavior of the prototype mooring system is modeled using heavy chain and a high-catenary mooring line.

Author(s):  
Gang Zou ◽  
Lei Wang ◽  
Feng Zhang

As the offshore industry is developing into deeper and deeper water, station keeping technics are becoming more and more important to the industry. Based on the dynamic positioning system, the thruster assisted mooring system (TAMS) is developed, which consisted of mooring lines and thrusters. The main function of the TAMS is to hold a structure against wind wave and current loads with its thruster and cables, which is mainly evaluated by the holding capacity of the system. The arrangement of the mooring lines (location of anchor or the mooring line angle relative to platform) will directly affect the TAMS holding capacity because of the influence of the directions of the mooring forces. So finding out an optimum arrangement of the mooring lines is essential since the performance of the TAMS depends greatly on the arrangement of the mooring lines. The TAMS of a semi-submersible platform, which is studied in this paper, consisted of eight mooring lines. By fixing the layout of the thrusters and changing the location of each mooring line for every case, the performances of the TAMS are analyzed. The platform motions, mooring line tensions and power consumptions are compared to obtain the optimum arrangement of mooring lines, and thus a thruster assisted mooring system with a better performance can be achieved. Time domain simulation is carried out in this paper to obtain the results.


Author(s):  
Junfeng Du ◽  
Hongchao Wang ◽  
Anteng Chang ◽  
Mingyuan Sun ◽  
Junrong Wang ◽  
...  

Abstract Mooring lines are the most commonly used station-keeping systems for floating platforms, and the pre-tension of the mooring lines has significant effect on the dynamics of floater/mooring system. However, during the model test, which is the most important method for the research on the floater/mooring system, the pre-tension of the designed mooring lines in the basin are always significantly different with the target values of the ideal model due to the error of the manufacture of the mooring lines and positon locating of the anchor point and so on. As a result, the adjustment of the pretension of the mooring lines based on the ideal model is an important task during the model test. The pre-tension is always adjusted by increasing or decreasing mooring line length. While all the mooring lines are connected with the floater and coupled with each other, pre-tension adjustment is an unwarranted and cyclic process which often wastes a lot of time. This paper presents a novel methodology for regulating the mooring line pre-tension based on matrix calculation. The increment matrix of the mooring line tension can be obtained by increasing or decreasing the length of each mooring line in the numerical model. Assuming that the increment the mooring line tension is linear to the change of the mooring line length, the adjustment amount of each mooring line length can be calculated from the difference of the real pre-tension and the target pre-tension. However, the mooring line tension is always nonlinear to the mooring line length. Calculating the increment matrix of the mooring line tension and adjustment of the mooring line length is also a cyclic process until the error of real pre-tension of the model in the basin and target value can meet the accuracy requirement. This method is used in a model of a mooring system with 12 mooring lines which are connected with a semi-submersible platform. The test results show that the pre-tension of mooring lines can be adjusted to the target value quickly based on the method proposed in this paper.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


2021 ◽  
Author(s):  
Willemijn Pauw ◽  
Remco Hageman ◽  
Joris van den Berg ◽  
Pieter Aalberts ◽  
Hironori Yamaji ◽  
...  

Abstract Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1]. Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented. The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response. Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions. In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined. This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.


Author(s):  
Lars Hilmersen

The use of fibre ropes made by synthetic fibres have been used more frequent as the offshore industry is moving towards larger water depths. An important aspect is the effect of handling on the large, but delicate, ropes during installation offshore using tools and equipment that easily can destroy the load bearing capacities of the ropes. In order to get hands on experience in the field large polyester ropes have been used as inserts in catenary mooring lines for Mobile Offshore Units (MODU) working on depths ranging from 80 to 350 meters. The ropes have been integrated in the catenary chain mooring lines both in the suspended part and in the bottom part of the mooring leg thus having been exposed to seafloor clay. Subsea buoy have been attached to the ropes using smaller size fibre ropes in order to lift the mooring lines from the seafloor. The paper will detail how the large fibre ropes have been mobilised and demobilised repeatedly from/to storage drums to/from the installation vessel winch drum. During installation and retrieval the fibre ropes have been installed from the vessels winch drum using regular anchor handling equipment and vessels. When the MODU has been moved between locations some ropes have been retrieved to the vessels winch drums while the others have been used to tow and to keep the units station. Samples of the used ropes are taken and is subjected to a test program in the laboratory in order to document the effect of extensive use and handling and exposure to seabed clay.


Author(s):  
Adinarayana Mukkamala ◽  
Partha Chakrabarti ◽  
Subrata K. Chakrabarti

The new parallel Tacoma Narrows Bridge being constructed by Tacoma Narrows Constructors will be mounted on two towers and these towers in turn will be supported by reinforced concrete caissons referred to as East Caisson (Tacoma side) and West Caisson (Gig Harbor side). Each Caisson is towed to the location and several stages of construction will take place at the actual site. During construction, the floating caissons will be moored in place to hold it against the flood and ebb currents in the Narrows. During the mooring system design, a desired pretension is established for the lines at each draft. However, due to practical limitations in the field some variations to this design pretension value may be expected. It is important to study the effect of this variation on the overall performance of the mooring system. In this paper, the sensitivity of the mooring line pretension on the overall performance of the mooring system for the above caisson is presented. During this study, all the variables that affect the mooring system design such as mooring system layout, mooring line makeup, anchor positions, fairlead departure angles, and fairlead locations are kept constant. The only variable changed is the pretension of the mooring lines. Two approaches for defining the variations in the pretension have been studied in this paper. In the first approach, the pretension is changed in a systematic way (predicted approach). In the second method the pretension is changed randomly. The latter is considered more likely to occur in the field for this type of complex mooring system. Both sets of results are presented for some selected drafts attained by the caisson during its construction. The difference in the results from the two methods is discussed.


Author(s):  
Jose´ Carlos Lima de Almeida ◽  
Ronaldo Rosa Rossi ◽  
Ricardo Sobral

The new scenario of oil exploration in ultra deep water moves forward to 3000 m, has been putting for the companies that accept this technological challenger significant, border of the techno-scientific knowledge. Therefore, nowadays in this case of ultra deep waters, where the forces above the mooring lines are increase and the use of the new material in Petrobras Floating Production Units, it is necessary the good numerical analyses and experimental test by the mooring line. It appears the need to look for a solution for the problems according to the changes of the polyester rope in the production platform without the bottom extension change and its foundation (fixed point). According to this challenge it was necessary to develop a remote connection and disconnection device. This device is the KS hook and its optimization has been created using the fracture mechanical conception optics and computers tools (FEM and mooring software). There are two conditions to develop this device: one condition is functional and the other is structural. For the functional condition, it’s necessary to create the facilities for handling and installations. For the structural conditions, it is necessary to use the special wrought steel material, treatment for steel characteristic and right geometry. Finite Elements Modeling analyze used the Ansys software, considered the hardness profile material for Minimum Break Load (MBL). The lifetime design is about 25 years for this case and the fatigue analysis considered the residual stress and plasticity for structural device. Previous simulation is especially important in predicting behavior and in the development of new design products before testing. The model was meshed with 3D first order tetrahedral elements solid45. The mesh was sufficiently fine to ensure minimal loss of accuracy in curved geometry. There isn’t a TN fatigue curve (reference API Fatigue curves) for this KS Hook device geometry, in this case become necessary to use the model test to obtain this curve with the extrapolation of the results. The Finite Elements Modeling analyze used with the Material SN Fatigue curve will be used for this validation. Previous simulation is especially important in predicting behavior and in the development of new design products before testing.


Author(s):  
Amany M. A. Hassan ◽  
Martin J. Downie ◽  
Atilla Incecik ◽  
R. Baarholm ◽  
P. A. Berthelsen ◽  
...  

This paper presents the results of an experiment carried out on a semi-submersible model to measure the steady drift force and low frequency surge motions. In the experiments, the influence of mooring systems was also investigated in different combinations of current and sea state. The measurements were carried out with a 1/50 scale model which was moored using horizontal springs and catenary mooring lines. A comparative study of the mean values of steady drift motions and the standard deviation of the low frequency motion amplitudes is presented. In addition, the effect of current on the damping ratio is discussed. It is found that for both horizontal and catenary moorings, the presence of a current increases the damping ratio of the system. For the catenary mooring system, as expected, the presence of mooring lines and their interaction with waves and current increases the damping compared to the damping of the horizontal mooring system. The measured mean values of the surge motions in a wave–current field are compared to the superposed values of those obtained from waves and current separately. For the horizontal mooring, it is found that there is good agreement in moderate sea states, while in higher sea states the measured motion responses are larger. In the wave-current field, the standard deviation of the surge motion amplitudes is found to be less than that obtained in waves alone. This can be explained by the increased magnitude of the damping ratio. Only in the cases of high sea states with the horizontal mooring system, was it found that the standard deviation of the surge motions is slightly larger than those obtained for waves and current separately. This may be explained by the absence of catenary mooring line damping.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8303
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chengyuan Wang ◽  
Yuangang Tu ◽  
Zhenqing Liu

Floating wind turbine vibration controlling becomes more and more important with the increase in wind turbine size. Thus, a novel three-bifurcated mooring system is proposed for Spar-type floating wind turbines. Compared with the original mooring system using three mooring lines, three-bifurcated sub-mooring-lines are added into the novel mooring system. Specifically, each three-bifurcated sub-mooring-line is first connected to a Spar-type platform using three fairleads, then it is connected to the anchor using the main mooring line. Six fairleads are involved in the proposed mooring system, theoretically resulting in larger overturning and torsional stiffness. For further improvement, a clump mass is attached onto the main mooring lines of the proposed mooring system. The wind turbine surge, pitch, and yaw movements under regular and irregular waves are calculated to quantitatively examine the mooring system performances. A recommended configuration for the proposed mooring system is presented: the three-bifurcated sub-mooring-line and main mooring line lengths should be (0.0166, 0.0111, 0.0166) and 0.9723 times the total mooring line length in the traditional mooring system. The proposed mooring system can at most reduce the wind turbine surge movement 37.15% and 54.5% when under regular and irregular waves, respectively, and can at most reduce the yaw movement 30.1% and 40% when under regular and irregular waves, respectively.


Author(s):  
Arcandra Tahar ◽  
Djoni Sidarta ◽  
Alex Ran

Polyester mooring lines have been used in the offshore industry since the late ’90s. With increasing oil exploration and production in deeper waters, using polyester lines provides greater benefit than using traditional steel wires and chains. Some advantages of using polyester include a reduction of mooring line weight, a reduction in vessel offset and a reduction in the dynamics of the line tensions. However, unlike steel, polyester lines exhibit axial stiffness characteristics that are nonlinear and vary with time and loading history. Tahar (2001) developed a comprehensive theory and numerical tool to capture this behavior. The formulas allow relatively large elongation and nonlinear stress-strain relationships, as typically observed in polyester fibers. The mooring line dynamics are based on a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. Since this theory is computationally intensive, the benefits outweigh the costs less than they do for the practical approach recommended by API. Therefore, the fully coupled dynamic analysis tool CHARM3D has been modified to incorporate the API-recommended approach. Two axial stiffnesses (EA), post installation (static) stiffness and storm (dynamic) stiffness, have been convoluted into a dual stiffness to represent the total response of the floating platform in a single run. In the traditional method, the analyses are done twice, one run for each stiffness. Then, the extremes from each run are used as governing values for design. This paper presents the global performance comparison between the dual stiffness method and the traditional method. The effect of motions on SCR strength is also investigated using ABAQUS software.


Sign in / Sign up

Export Citation Format

Share Document