Piezoelectric Vibration-Based Energy Harvesters for Oil and Gas Applications

Author(s):  
L. Loureiro Silva ◽  
P. C. C. Monteiro ◽  
Marcelo A. Savi ◽  
Theodoro A. Netto

Monitoring and control of subsea systems in remote ultra deep water scenarios is challenging as well as an opportunity for development and application of new technologies. One of the major problems is providing continuous power to sensors and actuators, independent of electrical umbilical cables. A conventional solution is the use of electrochemical batteries. However, problems can occur using batteries due to their finite lifespan. The need for constant replacement in remote locations can become a very expensive task or even impossible. Piezoelectric energy harvesters have received great attention for vibration-to-electric energy conversion over the last years. The evaluation of the power output of devices for different excitation frequency and amplitude of vibration has an important role in the design of such devices. This work describes the methodology to design a prototype that can be used in a pipe subjected to flow induced vibrations. Numerical model has been developed to reproduce the electromechanical coupling mechanism aiming at estimating the output voltage of the piezoelectric harvester. The results show the potential of piezoelectric materials for this application.

2018 ◽  
pp. 826-862
Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


2018 ◽  
Vol 29 (20) ◽  
pp. 3949-3959 ◽  
Author(s):  
Adriane G Moura ◽  
Alper Erturk

We establish and analyze an analytical framework by accounting for both the piezoelectric and flexoelectric effects in bimorph cantilevers. The focus is placed on the development of governing electroelastodynamic piezoelectric–flexoelectric equations for the problems of resonant energy harvesting, sensing, and actuation. The coupled governing equations are analyzed to obtain closed-form frequency response expressions via modal analysis. The combined piezoelectric–flexoelectric coupling coefficient expression is identified and its size dependence is explored. Specifically, a typical atomistic value of the flexoelectric constant for barium titanate is employed in the model simulations along with its piezoelectric constant from the existing literature. It is shown that the effective electromechanical coupling of a piezoelectric material, such as barium titanate, is significantly enhanced for thickness levels below 100 nm. The electromechanical coupling coefficient of a barium titanate bimorph cantilever increases from the bulk piezoelectric value of 0.065 to the combined piezoelectric–flexoelectric value exceeding 0.3 toward nanometer thickness level. Electromechanical frequency response functions for resonant power generation and dynamic actuation also capture the size-dependent enhancement of the electromechanical coupling. The analytical framework given here can be used for parameter identification and design of nanoscale cantilevers that can be used as energy harvesters, sensors, and actuators.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2163 ◽  
Author(s):  
Sanghyun Yoon ◽  
Jinhwan Kim ◽  
Kyung-Ho Cho ◽  
Young-Ho Ko ◽  
Sang-Kwon Lee ◽  
...  

In this study, inertial mass-based piezoelectric energy generators with and without a spring were designed and tested. This energy harvesting system is based on the shock absorber, which is widely used to protect humans or products from mechanical shock. Mechanical shock energies, which were applied to the energy absorber, were converted into electrical energies. To design the energy harvester, an inertial mass was introduced to focus the energy generating position. In addition, a spring was designed and tested to increase the energy generation time by absorbing the mechanical shock energy and releasing a decreased shock energy over a longer time. Both inertial mass and the spring are the key design parameters for energy harvesters as the piezoelectric materials, Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics were employed to store and convert the mechanical force into electric energy. In this research, we will discuss the design and performance of the energy generator system based on shock absorbers.


2011 ◽  
Vol 55-57 ◽  
pp. 498-503
Author(s):  
Bin Zheng ◽  
Liang Ping Luo

When designing implantable biomedical MEMS devices, we must provide electric power source with long life and small size to drive the sensors and actuators work. Obviously, traditional battery is not a good choice because of its large size, limited lifetime and finite power storage. Living creatures all have non-electric energy sources, like mechanical energy from heart beat and pulse. Piezoelectric structure can convert mechanical energy to electric energy. In the same design condition, the more electric energy is generated, the better the piezoelectric structure design. This paper discusses the topology optimization method for the most efficient implantable piezoelectric energy harvesting device. Finally, a design example based on the proposed method is given and the result is discussed.


2008 ◽  
Vol 20 (5) ◽  
pp. 587-595 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin

A coupled finite element method (FEM) and circuit simulation approach for analyzing piezoelectric energy harvesters is presented. The advantage of the proposed method is that the mechanical analysis of the generator can be done using available FEM packages, while the circuit analysis can be performed using standard circuit simulation software (e.g., SPICE). The electromechanical coupling between the two physical domains is achieved by applying equivalent piezoelectric loads in the mechanical model, and equivalent electrical voltages in the electric model. This approach allows for the modeling of complex mechanical geometries and sophisticated, non-linear circuits. The solutions of two example problems are presented: (1) a beam generator with a resistive load, which is compared to an existing analytical solution, and (2) a plate generator with a non-linear diode bridge circuit. Though relatively easy to implement, the explicit solution technique presented in this article can be computationally expensive for complicated models with long simulation time-histories.


2022 ◽  
Vol 14 (2) ◽  
pp. 863
Author(s):  
Chenchen Li ◽  
Shifu Liu ◽  
Hongduo Zhao ◽  
Yu Tian

To advance the development of piezoelectric energy harvesters, this study designed and manufactured bridge-unit-based and pile-unit-based piezoelectric devices. An indoor material testing system and accelerated pavement test equipment were used to test the electrical performance, mechanical performance, and electromechanical coupling performance of the devices. The results showed that the elastic modulus of the pile structure device was relatively higher than that of the bridge structure device. However, the elastic modulus of the two devices should be improved to avoid attenuation in the service performance and fatigue life caused by the stiffness difference. Furthermore, the electromechanical conversion coefficients of the two devices were smaller than 10% and insensitive to the load magnitude and load frequency. Moreover, the two devices can harvest 3.4 mW and 2.6 mW under the wheel load simulated by the one-third scale model mobile load simulator, thus meeting the supply requirements of low-power sensors. The elastic modulus, electromechanical conversion coefficients, and electric performance of the pile structure device were more reliable than those of the bridge structure device, indicating a better application prospect in road engineering.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5862
Author(s):  
Antonino Quattrocchi ◽  
Roberto Montanini ◽  
Salvatore De Caro ◽  
Saverio Panarello ◽  
Tommaso Scimone ◽  
...  

Piezoelectric energy harvesters (PEHs) are a reduced, but fundamental, source of power for embedded, remote, and no-grid connected electrical systems. Some key limits, such as low power density, poor conversion efficiency, high internal impedance, and AC output, can be partially overcome by matching their internal electrical impedance to that of the applied resistance load. However, the applied resistance load can vary significantly in time, since it depends on the vibration frequency and the working temperature. Hence, a real-time tracking of the applied impedance load should be done to always harvest the maximum energy from the PEH. This paper faces the above problem by presenting an active control able to track and follow in time the optimal working point of a PEH. It exploits a non-conventional AC–DC converter, which integrates a single-stage DC–DC Zeta converter and a full-bridge active rectifier, controlled by a dedicated algorithm based on pulse-width modulation (PWM) with maximum power point tracking (MPPT). A prototype of the proposed converter, based on discrete components, was created and experimentally tested by applying a sudden variation of the resistance load, aimed to emulate a change in the excitation frequency from 30 to 70 Hz and a change in the operating temperature from 25 to 50 °C. Results showed the effectiveness of the proposed approach, which allowed to match the optimal load after 0.38 s for a ΔR of 47 kΩ and after 0.15 s for a ΔR of 18 kΩ.


2020 ◽  
Vol 31 (14) ◽  
pp. 1697-1715
Author(s):  
Chunbo Lan ◽  
Yabin Liao ◽  
Guobiao Hu ◽  
Lihua Tang

Nonlinearity has been successfully introduced into piezoelectric energy harvesting for power performance enhancement and bandwidth enlargement. While a great deal of emphasis has been placed by researchers on the structural design and broadband effect, this article is motivated to investigate the maximum power of a representative type of nonlinear piezoelectric energy harvesters, that is, monostable piezoelectric energy harvester. An equivalent circuit is proposed to analytically study and explain system behaviors. The effect of nonlinearity is modeled as a nonlinear stiffness element mechanically and a nonlinear capacitive element electrically. Facilitated by the equivalent circuit, closed-form solutions of power limit and critical electromechanical coupling, that is, minimum coupling to reach the power limit, of monostable piezoelectric energy harvesters are obtained, which are used for a clear explanation of the system behavior. Several important conclusions have been drawn from the analytical analysis and validated by numerical simulations. First, given the same level of external excitation, the monostable piezoelectric energy harvester and its linear counterpart are subjected to the same power limit. Second, while the critical coupling of linear piezoelectric energy harvesters depends on the mechanical damping ratio only, it also depends on the vibration excitation and magnetic field for monostable piezoelectric energy harvesters, which can be used to adjust the power performance of the system.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3203 ◽  
Author(s):  
Zhenlong Xu ◽  
Hong Yang ◽  
Hao Zhang ◽  
Huawei Ci ◽  
Maoying Zhou ◽  
...  

The approach to improve the output power of piezoelectric energy harvester is one of the current research hotspots. In the case where some sources have two or more discrete vibration frequencies, this paper proposed three types of magnetically coupled multi-frequency hybrid energy harvesters (MHEHs) to capture vibration energy composed of two discrete frequencies. Electromechanical coupling models were established to analyze the magnetic forces, and to evaluate the power generation characteristics, which were verified by the experimental test. The optimal structure was selected through the comparison. With 2 m/s2 excitation acceleration, the optimal peak output power was 2.96 mW at 23.6 Hz and 4.76 mW at 32.8 Hz, respectively. The superiority of hybrid energy harvesting mechanism was demonstrated. The influences of initial center-to-center distances between two magnets and length of cantilever beam on output power were also studied. At last, the frequency sweep test was conducted. Both theoretical and experimental analyses indicated that the proposed MHEH produced more electric power over a larger operating bandwidth.


Sign in / Sign up

Export Citation Format

Share Document