ISUM: Its Birth, Growth and Future

Author(s):  
Sherif Rashed

ISUM (The Idealized Structural Unit Method) was born in 1972 to efficiently and accurately analyze the behavior of large size structures up to and beyond their ultimate strength. In this method a structure is divided into large elements, basically its structural units (members). Geometric and material non-linear behavior inside the element is formulated and expressed at a limited number of nodal points at the element boundaries. In this way a large structure can be modeled using a coarse mesh while still being able to consider the nonlinear behavior until the collapse of the structure. Several ISUM elements have been formulated and used to analyze the non-linear behavior of large ship structures. In further developments, more elements with more accurate formulations have been developed and more types of structures have been analyzed using this method. The same ISUM concept has been applied to the analysis of welding deformation of large welded structures and to failure analysis of structural and mechanical components subjected to impact loads. In this paper, the basic ISUM concept is outlined, and several elements are presented. Examples of applications to ships and marine structures are presented demonstrating the effectiveness of the method. Recent developments are also reviewed and future potential is explored.

Author(s):  
E. N. Cuesta ◽  
V. R. Rastelli ◽  
L. U. Medina ◽  
N. I. Montbrun ◽  
S. E. Diaz

Recent developments improving load capacity foretell the practical implementation of Active Magnetic Bearings (AMB) on industrial level, pushed by the advantages of reduced wear and higher speeds that they make available. However, the possibility of an eventual power failure forces the use of back-up (catcher) bearings, which usually are of the ball bearing type. The back-up bearings present a clearance between the shaft and the inner race, such that there is not contact during normal operation. On a power failure or an emergency stop, the rotor is only supported by the catcher bearings. Thus, the rotor motion within the clearance results on a succession of impacts, contact and non-contact intervals producing a non-linear behavior of the system. The complexity of this non-linear behavior prevents the use of traditional methods for the design of the catcher bearings, calling for the need of extensive experimentation and previous experience in their dimensioning process. Here, the response of a rigid rotor, supported by a pivot on the drive side and a magnetic bearing on the other side, is measured during the emergency stop from several operating speeds. Non-linear analysis tools, such as Poincare´ Maps and Bifurcation Diagrams, are employed to demonstrate the non-linear characteristics of the motion, which in some conditions is shown to become chaotic with a vibration limit cycle. The rotor motion on the catcher bearings (with the magnetic bearing deactivated) is measured at constant running speeds. The limit cycles and chaotic attractors are described, showing the relation of the non-linear effects to the rotational speed.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1356
Author(s):  
Stefan-Andrei Irimiciuc ◽  
Alexandra Saviuc ◽  
Florin Tudose-Sandu-Ville ◽  
Stefan Toma ◽  
Florin Nedeff ◽  
...  

In a multifractal paradigm of motion, nonlinear behavior of transient periodic plasmas, such as Schrodinger and hydrodynamic-type regimes, at various scale resolutions are represented. In a stationary case of Schrodinger-type regimes, the functionality of “hidden symmetry” of the group SL (2R) is implied though Riccati–Gauge different “synchronization modes” among period plasmas’ structural units. These modes, expressed in the form of period doubling, damped oscillations, quasi-periodicity, intermittences, etc., mimic the various non-linear behaviors of the transient plasma dynamics similar to chaos transitions scenarios. In the hydrodynamic regime, the non-Newtonian behavior of the transient plasma dynamics can be corelated with the viscous tension tensor of the multifractal type. The predictions given by our theoretical model are confronted with experimental data depicting electronic and ionic oscillatory dynamics seen by implementing the Langmuir probe technique on transient plasmas generated by ns-laser ablation of nickel and manganese targets.


Author(s):  
B. Asgarian ◽  
M. Lesani

Pushover analysis is performed to determine the capacity of jacket type offshore structures subjected to lateral loads. Overall behavior of the platform in the nonlinear range of deformation can be observed from pushover analysis results. This analysis can be used for the platform capacity assessment. For performing pushover analysis, nonlinear behavior of structural elements and lateral load pattern should be obtained. Both displacement and load control type of the analysis can be performed. One of the important aspects of pushover analysis is the non-linear behavior of the underlying soil and its interaction with the pile. In this paper pushover analysis of sample jacket type offshore platforms considering pile soil interaction (PSI) is performed. In the pushover analysis performed, fiber elements are used for the modeling of the member and soil nonlinearities. Actual soil layer properties, which have been derived from geotechnical reports, are incorporated in the model using fiber elements of “DRAIN-3DX” software. Each soil layer is presented by an equivalent fiber element, having the same characteristics of the relevant soil. The pile structure from top elevation until its tip together with other jacket components including the legs and braces are also introduced by fiber elements. Push over analysis is performed for the platforms subjected to wave load pattern. In order to compare the Pile-Soil Interaction (PSI) effects, all of the analyses are also performed using fixed and pinned pile ends at mud line elevation and pile stubs. The significance of the Pile-Soil Interaction and soil non-linear behavior is pointed out from this comparison and analysis results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Meei-Ling Hung ◽  
Her-Terng Yau

Horizontal platform system (HPS) produces a nonlinear behavior from precision machinery systems. This mechanical system is implemented mainly in offshore areas or earthquake engineering. However, elucidating or controlling this non-linear behavior of mechanical systems is extremely difficult and time consuming. Therefore, in addition to developing an electronic circuit to implement HPS, this work designs a sliding mode control (SMC) for synchronizing the state trajectories of two horizontal platform systems, subsequently allowing us to easily understand the HPS, perform more detailed analysis, and achieve further control. Experimental results demonstrate the feasibility of implementing the HPS by the proposed electronic circuit system. Comparing the proposed electronic circuitry designs and the HPS of computer simulation reveals that the results of the non-linear dynamic behavior correlate well with each other. Finally, based on use of the control technology, master-slave chaos synchronization with sliding mode control is achieved by wireless sensors.


Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language.


2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarika Singh ◽  
Sandeep K. Arya ◽  
Shelly Singla

AbstractA scheme to suppress nonlinear intermodulation distortion in microwave photonic (MWP) link is proposed by using polarizers to compensate inherent non-linear behavior of dual-electrode Mach-Zehnder modulator (DE-MZM). Insertion losses and extinction ratio have also been considered. Simulation results depict that spurious free dynamic range (SFDR) of proposed link reaches to 130.743 dB.Hz2/3. A suppression of 41 dB in third order intermodulation distortions and an improvement of 15.3 dB is reported when compared with the conventional link. In addition, an electrical spectrum at different polarization angles is extracted and 79^\circ is found to be optimum value of polarization angle.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 850
Author(s):  
Pietro Burrascano ◽  
Matteo Ciuffetti

Ultrasonic techniques are widely used for the detection of defects in solid structures. They are mainly based on estimating the impulse response of the system and most often refer to linear models. High-stress conditions of the structures may reveal non-linear aspects of their behavior caused by even small defects due to ageing or previous severe loading: consequently, models suitable to identify the existence of a non-linear input-output characteristic of the system allow to improve the sensitivity of the detection procedure, making it possible to observe the onset of fatigue-induced cracks and/or defects by highlighting the early stages of their formation. This paper starts from an analysis of the characteristics of a damage index that has proved effective for the early detection of defects based on their non-linear behavior: it is based on the Hammerstein model of the non-linear physical system. The availability of this mathematical model makes it possible to derive from it a number of different global parameters, all of which are suitable for highlighting the onset of defects in the structure under examination, but whose characteristics can be very different from each other. In this work, an original damage index based on the same Hammerstein model is proposed. We report the results of several experiments showing that our proposed damage index has a much higher sensitivity even for small defects. Moreover, extensive tests conducted in the presence of different levels of additive noise show that the new proposed estimator adds to this sensitivity feature a better estimation stability in the presence of additive noise.


Sign in / Sign up

Export Citation Format

Share Document