Movement of a Sphere on a Flat Wall in Non-Newtonian Shear Flow

Author(s):  
Yaroslav Ignatenko ◽  
Oleg Bocharov ◽  
Roland May

For a particle on a wall or cuttings bed in a multiphase flow in confined geometries a condition for onset and lift-off is very important. In this case, a fundamental problem of hydrodynamic forces and torque acting on a particle moving near and on the wall in a viscous fluid needs to be solved. In this paper, systematical simulation of a flow was performed around a perfect rolling or sliding spherical particle near the wall. A shear flow of Newtonian and Herschel-Bulkley fluids was investigated. The simulation was conducted for Reynolds numbers up to 200 and the dimensionless positive particle velocity Vp < 1.4. The relative particle velocity was made dimensionless by dividing it by the incoming flow velocity in front of the particle. The simulation was performed using the open-source CFD package OpenFOAM. The simulation results for Newtonian fluid agree with data presented in the literature. For the particle’s low translational velocity the drag force coefficient in the non-Newtonian fluid is lower than in Newtonian fluid, but for increasing translational velocity the drag force coefficient increases. The lift force coefficient behavior is non-monotonic versus rheology parameters. Lift and drag force show a sudden drop for very small translational velocities. Our simulation shows that in the case of large Bingham numbers the particle’s lift force can be negative for steady perfect particle rolling. Thus, friction between particle and surface prevents particle’s take-off in some cases. Knowing the dependence of the lift force on Reynolds number and rheological parameters allows one to determine incipient motion and take-off conditions for a spherical particle.

2018 ◽  
Vol 847 ◽  
pp. 786-820 ◽  
Author(s):  
Methma M. Rajamuni ◽  
Mark C. Thompson ◽  
Kerry Hourigan

The effects of transverse rotation on the vortex-induced vibration (VIV) of a sphere in a uniform flow are investigated numerically. The one degree-of-freedom sphere motion is constrained to the cross-stream direction, with the rotation axis orthogonal to flow and vibration directions. For the current simulations, the Reynolds number of the flow, $Re=UD/\unicode[STIX]{x1D708}$, and the mass ratio of the sphere, $m^{\ast }=\unicode[STIX]{x1D70C}_{s}/\unicode[STIX]{x1D70C}_{f}$, were fixed at 300 and 2.865, respectively, while the reduced velocity of the flow was varied over the range $3.5\leqslant U^{\ast }~(\equiv U/(f_{n}D))\leqslant 11$, where, $U$ is the upstream velocity of the flow, $D$ is the sphere diameter, $\unicode[STIX]{x1D708}$ is the fluid viscosity, $f_{n}$ is the system natural frequency and $\unicode[STIX]{x1D70C}_{s}$ and $\unicode[STIX]{x1D70C}_{f}$ are solid and fluid densities, respectively. The effect of sphere rotation on VIV was studied over a wide range of non-dimensional rotation rates: $0\leqslant \unicode[STIX]{x1D6FC}~(\equiv \unicode[STIX]{x1D714}D/(2U))\leqslant 2.5$, with $\unicode[STIX]{x1D714}$ the angular velocity. The flow satisfied the incompressible Navier–Stokes equations while the coupled sphere motion was modelled by a spring–mass–damper system, under zero damping. For zero rotation, the sphere oscillated symmetrically through its initial position with a maximum amplitude of approximately 0.4 diameters. Under forced rotation, it oscillated about a new time-mean position. Rotation also resulted in a decreased oscillation amplitude and a narrowed synchronisation range. VIV was suppressed completely for $\unicode[STIX]{x1D6FC}>1.3$. Within the $U^{\ast }$ synchronisation range for each rotation rate, the drag force coefficient increased while the lift force coefficient decreased from their respective pre-oscillatory values. The increment of the drag force coefficient and the decrement of the lift force coefficient reduced with increasing reduced velocity as well as with increasing rotation rate. In terms of wake dynamics, in the synchronisation range at zero rotation, two equal-strength trails of interlaced hairpin-type vortex loops were formed behind the sphere. Under rotation, the streamwise vorticity trail on the advancing side of the sphere became stronger than the trail in the retreating side, consistent with wake deflection due to the Magnus effect. This symmetry breaking appears to be associated with the reduction in the observed amplitude response and the narrowing of the synchronisation range. In terms of variation with Reynolds number, the sphere oscillation amplitude was found to increase over the range $Re\in [300,1200]$ at $U^{\ast }=6$ for each of $\unicode[STIX]{x1D6FC}=0.15$, 0.75 and 1.5. The VIV response depends strongly on Reynolds number, with predictions indicating that VIV will persist for higher rotation rates at higher Reynolds numbers.


Mechanik ◽  
2017 ◽  
Vol 90 (7) ◽  
pp. 591-593
Author(s):  
Leszek Baranowski ◽  
Michał Frant

The article presents the methodology of determining the basic aerodynamic characteristics using the Fluent theoretical method and the theoretical and experimental method using the Prodas program. Presented calculations were made for a 122 mm non-guided missile. In order to compare both methods, the results of calculations of coefficient of drag force, lift force coefficient and pitching moment coefficient as a function of incidence angle of attack and Mach number are shown in graphs.


Soft Matter ◽  
2021 ◽  
Author(s):  
Lester Canque Geonzon ◽  
Motoyoshi Kobayashi ◽  
Yasuhisa Adachi

The hydrodynamic drag force on a spherical particle in shear flow near-wall is investigated using optical tweezers and microfluidics. Simple shear flow is applied using a microfluidic channel at different...


2020 ◽  
Vol 280 ◽  
pp. 104279 ◽  
Author(s):  
Anni Zhang ◽  
William L. Murch ◽  
Jonas Einarsson ◽  
Eric S.G. Shaqfeh

2008 ◽  
Vol 606 ◽  
pp. 115-132 ◽  
Author(s):  
JAMES W. SWAN ◽  
ADITYA S. KHAIR

The breakdown of the no-slip condition at fluid–solid interfaces generates a host of interesting fluid-dynamical phenomena. In this paper, we consider such a scenario by investigating the low-Reynolds-number hydrodynamics of a novel ‘slip–stick’ spherical particle whose surface is partitioned into slip and no-slip regions. In the limit where the slip length is small compared to the size of the particle, we first compute the translational velocity of such a particle due to the force density on its surface. Subsequently, we compute the rotational velocity and the response to an ambient straining field of a slip–stick particle. These three Faxén-type formulae are rich in detail about the dynamics of the particles: chiefly, we find that the translational velocity of a slip–stick sphere is coupled to all of the moments of the force density on its surface; furthermore, such a particle can migrate parallel to the velocity gradient in a shear flow. Perhaps most important is the coupling we predict between torque and translation (and force and rotation), which is uncharacteristic of spherical particles in unbounded Stokes flow and originates purely from the slip–stick asymmetry.


Soft Matter ◽  
2021 ◽  
Author(s):  
Varun Lochab ◽  
Shaurya Prakash

We quantify and investigate the effects of flow parameters on the extent of colloidal particle migration and the corresponding electrophoresis-induced lift force under combined electrokinetic and shear flow.


Soft Matter ◽  
2021 ◽  
Author(s):  
Emanuele Rossi ◽  
Jose Antonio Ruiz-Lopez ◽  
Adolfo Vazquez-Quesada ◽  
Marco Ellero

This study presents an analysis of the dynamics of a single and multiple chains of spherical super-paramagnetic beads suspended in a Newtonian fluid under the combined effect of an external...


Sign in / Sign up

Export Citation Format

Share Document