Evaluation of Conventional Methods of Establishing Extreme Mooring Design Loads

Author(s):  
Dunja Stanisic ◽  
Michalakis Efthymiou ◽  
Mehrdad Kimiaei ◽  
Wenhua Zhao

A key aspect in the design of a mooring system for a floating production unit is the estimation of the extreme mooring line loads for a specified short-term sea state of typical duration equal to 3 hours. Commonly used design approaches today are based on time-domain simulations whereby each 3 hour sea state is run a number of times (typically 10–30 times) to represent the randomness of the sea. A maximum response is recorded from each simulation. Particular statistic of the maxima data (e.g. mean, most probable maximum or a percentile) is used to represent the extreme mooring load for which the lines are designed. This paper studies and assesses the accuracy of obtaining design value from a population of maxima with reference to the mooring line load of a large ship-shaped floating production vessel. A coupled model, including all mooring lines and risers, has been developed, validated and used to generate responses for 100yr extreme condition and 10,000yr survival condition. To establish an accurate benchmark against which the results are compared, the time-domain analyses (duration 3 hours) are repeated 170 times, for each sea state, to represent different random realisations of each environment. It is examined how the accuracy of predicting the design mooring line load, from a sample of response maxima, improves as the number of simulations is increased progressively from 10 through to 170. The assessment is performed across different statistics of maxima that are usually chosen to represent the design response. Besides the mooring line load, other response parameters such as heave and turret excursion, are examined in this paper. The paper examines whether the severity of the response (100yr vs 10,000yr storm) or the response variable affect the number of maxima required to achieve statistical stability. The results indicate fitting a Gumbel distribution to the maxima from about 30–40 simulations can yield results that are statistically stable and accurate and are recommended as preferred methods of estimating the design response.

Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


Author(s):  
Jun Wong ◽  
Colin Paton ◽  
Cedric Morandini ◽  
Timothy Withall ◽  
Andrew Kilner

A key driver in assessing the economic viability of floating LNG terminals is the marine offloading operations uptime. Marine offloading operations uptime is the percentage of time on site for which weather conditions are such as to permit offloading operations to be undertaken. Physical model testing or time domain numerical simulation techniques can model these marine offloading operations to a very high level of fidelity. However it is not practical for reasons of time and cost to apply such high fidelity modeling to the long duration data sets necessary to make reliable uptime estimates. Simpler solution methods, which can be used to carry out rapid what if studies as well as provide uptime assessment based on very long data records are therefore required. This paper illustrates that a reliable and fast numerical approach based on frequency domain analysis can be developed and used as a pre-screening tool to identify key marine operations uptime drivers. In this method the process of determining the marine offloading operations uptime involves the following steps: 1. Collect and collate site-specific environmental data. The typical starting point for an uptime analysis will be 5 to 10 years of hindcast environmental data, consisting of records of the average wind, wave and current amplitude over successive 3-hour sea states. 2. Evaluate the expected vessel heading in each successive 3-hour sea state throughout the hindcast record. 3. For each 3-hour sea state, estimate the relative motions between the FPSO and LNGC, at the previously determined vessel heading. From the relative motions estimate the envelope of motions of the loading arms and the maximum tensions in the mooring lines between the FPSO and LNGC. 4. For each 3-hour sea state compare the estimated loading arm motion envelopes and maximum mooring line tensions with the maximum acceptable design values to determine whether offloading would be feasible in this 3-hour sea state. 5. Identify times when there are sufficient consecutive 3-hour sea states to allow the offloading operation to be completed (weather window). Determine the percentage uptime from the ratio of the total of these periods to the total environmental data length. A range of sensitivity analysis can also be performed using this methodology, thereby allowing critical cases to be identified for further examination using the high fidelity model testing or time domain numerical simulation programs.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012020
Author(s):  
N O Hauge ◽  
L Li

Abstract This study compares deployment of a subsea template simulated as a coupled model and as an uncoupled model in the time domain simulation software Orcaflex. Defining vessel motion as prescribed simplifies the model and will therefore also decrease the simulation time. Models with predefined vessel motions are called uncoupled models. Vessel motion in a coupled model is a continuously calculated reaction to the forces acting on the vessel. Some software might struggle to run coupled models. The deployment simulations are narrowed down to focus on the incident where the template crosses the splash zone when lifted with an offshore construction vessel. Noticeable differences between the allowable sea state results are observed from the two different simulation methods. Running the time domain simulation as an uncoupled model gives lower allowable sea states than the results from the coupled time domain simulation model.


2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


2013 ◽  
Vol 347-350 ◽  
pp. 1393-1397
Author(s):  
Guo Wei Cai ◽  
Yi Gong Wang ◽  
Yang Jin Jiang ◽  
Tie Feng Li

By revised method of fitting magnetization curve in segment, technique of simulating the nonlinear characteristic of laminated core is enhanced. The DC-bias problem is computed based on the time-domain magnetic-circuit coupled model while considering the saturated and unsaturated magnetizing characteristics of the laminated core. Experiments are designed to verify the validity of the proposed method, and then the volt-ampere feature of unsaturated magnetization is learned. Consequently, the results indicate that the improved method is more accurate and efficient by contrast.


2021 ◽  
Author(s):  
Chungkuk Jin ◽  
Sung-Jae Kim ◽  
MooHyun Kim

Abstract We develop a fully-coupled time-domain hydro-elasticity model for the Submerged Floating Tunnel (SFT) based on the Discrete-Module-Beam (DMB) method. Frequency-domain simulation based on 3D potential theory results in multibody’s hydrodynamic coefficients and excitation forces for tunnel sections. Subsequently, we build the time-domain model with the multibody Cummins equation and external stiffness matrix from the Euler-Bernoulli and Saint-Venant torsion theories. We establish the mooring line model with rod theory and couple components with translational springs at their respective connection locations. We then compare the dynamic motions, wave forces, and mooring tensions between the present and Morison-equation-based elastic models under regular wave excitations at different submergence depths. The present model is especially important for the shallowly submerged tunnel in which the Morison model shows exaggerated motions, especially at high-frequency range.


Author(s):  
Toshifumi Fujiwara

The author proposed the Vortex-induced Motion (VIM) simulation method of a semi-submersible type offshore floating structure using the wake oscillator model based on the potential theory and model test data. This method is easy to use for the time-domain simulation of the VIM amplitude, that is in-line, transverse and yaw motions, of the semi-submersible floater in case of being demented mooring safety assessment of that. The simulation method presented in this paper was modified the single circular floater simulation method with the wake oscillator model for a semi-submersible floater. Some empirical parameters, obtained from the systematic model tests used many semi-submersible floaters, are only decided from external form of the semi-submersible floaters, that is the column / lower hull ratio etc. This simulation method is able to indicate general VIM trend and to be used for the assessment of mooring lines safety in the design stage. Using the VIM amplitude simulation, fatigue damage of mooring lines on one sample semi-submersible floater was investigated as an example.


Author(s):  
Xuliang Han ◽  
ShiSheng Wang ◽  
Bin Xie ◽  
Wenhui Xie ◽  
Weiwei Zhou

In order to predict the coupled motion and external wave load for the design of deepwater floating structure system, based on the three-dimensional time-domain potential flow theory, this paper present the indirect time-domain dynamic coupling method and the body nonlinear dynamic coupling method. The perturbation expansion theory is adopted to evaluate hydrodynamic on the fixed mean wetted body surface for the former method. The transient free surface Green function has been extended and applied to calculate the nonlinear hydrodynamic on the instantaneous wetted exact body surface for the latter method. The finite element model is employed to solve dynamic response of mooring line. Then asynchronous coupled method is adopted to achieve the coupled dynamic analysis of platform and mooring lines. The time-domain motion responses and spectrum analysis of Spar platform are verified and compared with the traditional indirect time-domain coupling dynamic method when the mooring system is completed. Also the time-domain motion responses and statistical characteristic of Spar platform are investigated with one mooring line broken in extreme sea condition. Some conclusions are obtained, that is, dynamic coupling effects are significant and transient position hydrodynamic calculation of platform has a great influence on the low frequency motion. The results also show that the influence on the global performance of mooring system is different when the broken line is in different place. A remarkable influence occurs when the broken mooring line is in the head-wave direction.


Author(s):  
Yidan Gao ◽  
Ying Min Low

A floating production system is exposed to many different environmental conditions over its service life. Consequently, the long-term fatigue analysis of deepwater risers is computationally demanding due to the need to evaluate the fatigue damage from a multitude of sea states. Because of the nonlinearities in the system, the dynamic analysis is often performed in the time domain. This further compounds the computational difficulty owing to the time consuming nature of time domain analysis, as well as the need to simulate a sufficient duration for each sea state to minimize sampling variability. This paper presents a new and efficient simulation technique for long-term fatigue analysis. The results based on this new technique are compared against those obtained from the direct simulation of numerous sea states.


Author(s):  
D. L. Garrett ◽  
R. B. Gordon ◽  
J. F. Chappell

Viscous damping due to drag on mooring lines and risers is seastate dependent and significantly affects the motion of a floating platform in deep water, particularly in everyday seastates. This in turn impacts design of the risers, which are typically controlled by fatigue. The dynamic interaction between the platform, mooring and risers cannot be evaluated using conventional uncoupled analysis tools, where each is analyzed separately. Rather, coupled analysis is required to provide a consistent way to model the drag-induced damping from mooring lines and risers. We describe a coupled, frequency domain approach (RAMS – Rational Approach to Marine Systems) for calculating the dynamic response of vessel, mooring and risers. In coupled analysis, the risers and mooring lines are included in the model along with the floater. In this way, damping of the floater motion due to drag on the mooring lines and risers is incorporated directly. It is also valuable to estimate the linear damping factors from the full, coupled analysis results. These damping factors may then, for example, be used in an equivalent linear model of the floating system in which the stiffness and damping effects of the mooring and risers are represented as additions to the floater stiffness and damping matrices. Such a model could be used to efficiently design a subsystem (e.g.; an export riser). We describe a technique to determine the equivalent linear damping factors from the coupled analysis results. This paper also illustrates the use of these methods for a West Africa FPSO. The need for coupled analysis is shown by comparing results from the fully coupled model with those obtained using an uncoupled method in which the mooring line damping is approximated.


Sign in / Sign up

Export Citation Format

Share Document