Research on Ship Structural Fatigue Damage Under Nonlinear Wave Bending Moment

Author(s):  
Jingxia Yue ◽  
Lihua Peng ◽  
Wengang Mao ◽  
Chi Zhang ◽  
Wei Dong ◽  
...  

Loads acting on ship structures are complex and randomly over time and the nonlinear effect caused by wave loading is one of the research focus. The linear and nonlinear vertical wave bending moment (VBM) in different speeds and sea states and their effects on ship structural fatigue strength were investigated for a flat container with high ratio of width to depth. The VBM under the linear regular waves and irregular waves were calculated based on the three dimension (3D) potential theory. The considered nonlinear wave loading was caused by sea pressure near the mean free surface as well as the geometric nonlinearity. Hydrodynamic calculations in regular wave were presented to figure out the frequency response function (FRF) of VBM in the mid-ship section. Irregular waves were verified to obtain the VBM history in 4 sea states. What’s more, VBMs from a segmented elastic model test were obtained to investigate the influence of nonlinearity. On the basis of the wave loadings obtained from simulation and test, the hotspot stress histories under irregular waves were deduced in time domain by using the beam theory. Fatigue cumulative damage per hour under several random sea states were obtained on the basis of the rain-flow counting and S-N curve. Based on the fatigue damage from the numerical analysis and model test, it is believed that speeds and significant wave height have a positive correlation with the fatigue damage of ship structures. A good agreement was obtained between the numerical analysis values and the low frequency part of the test and the nonlinear analysis in the simulation could offer reasonable prediction for the fatigue damage caused by the wave frequency response. Also shown as the test result, fully nonlinearities have a great contribution to the fatigue damage.

2002 ◽  
Vol 39 (02) ◽  
pp. 95-104
Author(s):  
Xue KangGu ◽  
Torgeir Moan

Fatigue is a principal mode of failure in ship structures, especially when high tensile steels are applied. Although significant efforts have been made to predict fatigue damage, there are still uncertainties existing, e.g., in the stress histories that cause fatigue. This paper addresses estimation of fatigue damage in ships under wave loads, with an emphasis on containerships, which have large bow flare and low hull girder rigidity. Linear and nonlinear wave-induced loads as well as dynamic effects due to hull flexibility, i.e., whipping, are researched. With the direct analysis method of fatigue, the nature of the wave loading, hull rigidity, structural damping, stress range counting algorithm and SN curve on structural fatigue damage are investigated. In long-term fatigue damage estimates, the influence of different sea environments is numerically analyzed. The importance of nonlinearity of wave loads and especially the whipping on the structural fatigue damage is demonstrated by calculation for a large container vessel with large flare and lowest natural frequency of 0.749 Hz. Depending upon sea environments and SN curves used in long-term predictions, the fatigue damage based on nonlinear wave loads (excluding whipping) is 10–100% larger than that due to linear wave loads; the fatigue damage based on nonlinear combined loads (including whipping) may be 1–9 times larger than that of steady-state nonlinear wave loads.


1986 ◽  
Author(s):  
K. Syvertsen ◽  
K.A. Farnes ◽  
D.N. Karunakaran ◽  
T. Overvik

Author(s):  
Z. Gue´de´ ◽  
M. Olagnon ◽  
H. Pineau ◽  
M. Franc¸ois ◽  
V. Quiniou

This paper presents a validation of theoretical formulas for the assessment of fatigue damage induced by a multimodal wave spectrum. Those formulas, denoted Iterative Component Addition (ICA), were set up to provide a conservative estimate and use the individual damages of the components of the spectrum. Their objective and main interest is a drastic reduction of computation time, especially for complex (multimodal) wave loading conditions. They are validated on an actual application, which is the assessment of the fatigue damage induced by the wave bending moment of an FPSO hull girder subjected to wave loading in a West Africa area. That damage is computed according to two different procedures, one with the conventional method, taken as a reference, and the other using the ICAs formulas. The results are compared and discussed. They show that the use of ICA formulas provides a reasonably conservative estimate and allows significant savings of computational time.


Author(s):  
Hyunkyoung Shin ◽  
Byungcheol Kim ◽  
Pham Thanh Dam ◽  
Kwangjin Jung

The interests in new and renewable energies increase sharply while our world suffers from environmental pollution and energy shortage. Governments and organizations throughout the world have tried to develop those energies to reduce pollution and solve energy crisis. In this study, we carry out a 1:80 scale model test and full scale numerical analysis of the OC4 5MW semi-submersible offshore wind turbine system designed by DeepCwind project. The purpose of this model test and numerical analysis is to predict and evaluate its motion in irregular waves.


2021 ◽  
Vol 11 (10) ◽  
pp. 4432
Author(s):  
Jiseong Kim ◽  
Seong-Kyu Yun ◽  
Minsu Kang ◽  
Gichun Kang

The purpose of this study is to grasp the behavior characteristics of a single batter pile under vertical load by performing a model test. The changes in the resistance of the pile, the bending moment, etc. by the slope of the pile and the relative density of the ground were analyzed. According to the results of the test, when the relative density of the ground was medium and high, the bearing capacity kept increasing when the angle of the pile moved from a vertical position to 20°, and then decreased gradually after 20°. The bending moment of the pile increased as the relative density of the ground and the batter angle of the pile increased. The position of the maximum bending moment came closer to the ground surface as the batter angle of the pile further increased, and it occurred at a point of 5.2~6.7 times the diameter of the pile from the ground surface.


Author(s):  
Zhenjia (Jerry) Huang ◽  
Qiuchen Guo

In wave basin model test of an offshore structure, waves that represent the given sea states have to be generated, qualified and accepted for the model test. For seakeeping and stationkeeping model tests, we normally accept waves in wave calibration tests if the significant wave height, spectral peak period and spectrum match the specified target values. However, for model tests where the responses depend highly on the local wave motions (wave elevation and kinematics) such as wave impact, green water impact on deck and air gap tests, additional qualification checks may be required. For instance, we may need to check wave crest probability distributions to avoid unrealistic wave crest in the test. To date, acceptance criteria of wave crest distribution calibration tests of large and steep waves of three-hour duration (full scale) have not been established. The purpose of the work presented in the paper is to provide a semi-empirical nonlinear wave crest distribution of three-hour duration for practical use, i.e. as an acceptance criterion for wave calibration tests. The semi-empirical formulas proposed in this paper were developed through regression analysis of a large number of fully nonlinear wave crest distributions. Wave time series from potential flow simulations, computational fluid dynamics (CFD) simulations and model test results were used to establish the probability distribution. The wave simulations were performed for three-hour duration assuming that they were long-crested. The sea states are assumed to be represented by JONSWAP spectrum, where a wide range of significant wave height, peak period, spectral peak parameter, and water depth were considered. Coefficients of the proposed semi-empirical formulas, comparisons among crest distributions from wave calibration tests, numerical simulations and the semi-empirical formulas are presented in this paper.


2021 ◽  
Vol 4 (7(112)) ◽  
pp. 50-59
Author(s):  
Leontii Korostylov ◽  
Dmytro Lytvynenko ◽  
Hryhorii Sharun ◽  
Ihor Davydov

The structure of the hull of the project 1288 trawler in a region of fore hold was improved to ensure fatigue strength of assemblies of the intersection of main frames with the second bottom. To this end, a study of the fatigue strength of these assemblies was carried out for the original side structure and two versions of its modernization. Values of internal forces at the points of appearance of fatigue cracks in the compartment have been determined for three design versions of the side. It was found that the greatest forces act in the middle of the fore half of the compartment. Calculations of parameters of the long-term distribution of magnitudes of ranges of total equivalent operating stresses according to the Weibull law in the points of occurrence of fatigue cracks for different design versions of the side grillage have been performed. These parameters were determined for the middle of the fore hold of the vessel and for the areas in which maximum values of bending moment ranges are in effect with and without corrosive wear. Values of total fatigue damage and durability of the studied assemblies were determined. Calculations were carried out by nominal stress method, hot spot stress method, and experimental and theoretical method. It was shown that in order to ensure fatigue strength of the assembly under consideration, it is necessary to extend the intermediate frames of the original version of the side structure to the level of the second bottom fixing them to the deck. It is also necessary to attach a cargo platform to the side thus reducing the frame span. As a result, the level of fatigue damage over 25 years of operation will decrease by about 3.5 times. As it was found, approximate consideration of the slamming effect does not significantly increase the amount of fatigue damage to the assembly. The results of the development of recommendations for modernization of the side structure can be implemented both on ships of the 1288 project and on other ships with a transverse side framing system.


2020 ◽  
Vol 27 (1) ◽  
pp. 1-5
Author(s):  
Hanadi Naji ◽  
Nibras Khalid ◽  
Mutaz Medhlom

This paper aims at presenting and discussing the numerical studies performed to estimate the mechanical and thermal behavior of RC flat slabs at elevated temperature and fire. The numerical analysis is carried out using finite element programs by developing models to simulate the performance of the buildings subjected to fire. The mechanical and thermal properties of the materials obtained from the experimental work are involved in the modeling that the outcomes will be more realistic. Many parameters related to fire resistance of the flat slabs have been studied and the finite element analysis results reveal that the width and thickness of the slab, the temperature gradient, the fire direction, the exposure duration and the thermal restraint are important factors that influence the vertical deflection, bending moment and force membrane of the flat slabs exposed to fire. However, the validation of the models is verified by comparing their results to the available experimental date. The finite element modeling contributes in saving cost and time consumed by experiments.


2021 ◽  
Vol 24 (1) ◽  
pp. 40-45
Author(s):  
P. A. Radchenko ◽  
S. P. Batuev ◽  
A. V. Radchenko

Sign in / Sign up

Export Citation Format

Share Document