Robust Leakage Modeling for Plug and Abandonment Applications

Author(s):  
Mustafa Al Ramadan ◽  
Saeed Salehi ◽  
Catalin Teodoriu

Abstract Oil and gas wells that require to be shut off forever, after depleting their reserves, need to be plugged and abandoned. Plug and Abandonment (P&A) operations induce many arduous challenges worldwide. The aim of P&A is to isolate and prevent fluid leakage in the wellbore in such a way that all fluids are contained in their formation for an undefined time. Failure of P&A in isolating and preventing fluid leakage can jeopardize the well integrity. Cement plugs that are used in this operation play a crucial role in maintaining the well integrity. Cement is considered as a porous medium that has an ultra-low permeability that can be achieved when some additives are used in the cement slurry to reduce its permeability and pore space. The cement plug may deteriorate with time under harsh downhole conditions, such as high pressure and temperature and exposure to different fluids. Cement plug deterioration will result in increasing the cement permeability or the overall permeability by creating channels or microannuli. In this study, several scenarios are presented for gas leakage through cement plugs. In these leakage scenarios, the differential pressure across the cement plug was varied. The aim of generating these scenarios is to investigate the current required cement plug length. In each scenario, four different permeability values were used to assess the risk associated with each value. In addition, the cement plug length was varied to investigate how the cement plug length is going to help ensure good well integrity. The leakage scenarios presented revealed that longer cement plugs have a longer leakage time. In addition, the results show an increase of leakage time as microannulus gap permeability decreases. Differential pressure exerted on the cement plug have a strong effect on the leakage time. To achieve a long term well integrity in P&A phase, an ultra-low permeable cement plug with excellent bonding, longer cement plug, and a lower differential pressure across the cement must be considered.

Author(s):  
George Kwatia ◽  
Mustafa Al Ramadan ◽  
Saeed Salehi ◽  
Catalin Teodoriu

Abstract Cementing operations in deepwater exhibit many challenges worldwide due to shallow flows. Cement sheath integrity and durability play key roles in the oil and gas industry, particularly during drilling and completion stages. Cement sealability serves in maintaining the well integrity by preventing fluid migration to surface and adjacent formations. Failure of cement to seal the annulus can lead to serious dilemmas that may result in loss of well integrity. Gas migration through cemented annulus has been a major issue in the oil and gas industry for decades. Anti-gas migration additives are usually mixed with the cement slurry to combat and prevent gas migration. In fact, these additives enhance and improve the cement sealability, bonding, and serve in preventing microannuli evolution. Cement sealability can be assessed and evaluated by their ability to seal and prevent any leakage through and around the cemented annulus. Few laboratory studies have been conducted to evaluate the sealability of oil well cement. In this study, a setup was built to simulate the gas migration through and around the cement. A series of experiments were conducted on these setups to examine the cement sealability of neat Class H cement and also to evaluate the effect of anti-gas migration additives on the cement sealability. Different additives were used in this setup such as microsilica, fly ash, nanomaterials and latex. Experiments conducted in this work revealed that the cement (without anti-gas migration additive) lack the ability to seal the annulus. Cement slurries prepared with latex improved the cement sealability and mitigated gas migration for a longer time compared to the other slurries. The cement slurry formulated with a commercial additive completely prevented gas migration and proved to be a gas tight. Also, it was found that slurries with short gas transit times have a decent potential to mitigate gas migration, and this depends on the additives used to prepare the cement slurry.


Author(s):  
Soheil Akbari ◽  
Seyed Mohammad Taghavi

Abstract Plug and abandonment (P&A) of oil and gas wells is an essential process to prevent the oil and gas reservoir fluids migration over time and possibly contaminating other formations and also fresh water resources. In order to plug and abandon a well, a high quality cement plug placement is required. One of the most common methods of cement plug placement is the dump bailing method. In this method, a fixed volume of cement is dumped using a bailer on a mechanical plug in the wellbore. The cement slurry occupies the wellbore and also the annular region outside the dump bailer. In the processes of cement slurry placement, an extensive range of Newtonian or non-Newtonian fluids is used to remove the in-situ fluid (drilling fluid or water) in the wellbore. Based on the large number of parameters such as the density and viscosity differences between the fluids, the geometry type (pipe, annulus, etc.), the operation conditions (velocity, geometry inclination, dumping height), various kinds of placement and mixing flows can occur, and different flow regimes (e.g. inertial, viscous) can develop. In this paper, we experimentally study the placement of a heavy fluid to replace an in-situ light fluid in an inclined closed-end pipe (representative of the dump bailing method). The two fluids are Newtonian and miscible, and they have the same viscosity. We investigate the effects of some of the flow parameters such as the dumping height, the pipe inclination, and the inflow velocity of the heavy fluid on the degree of mixing and the placement quality and efficiency. Our results show that the the most efficient displacement happens with the shortest dumping height and at lower inclination from vertical. Also, a high inflow velocity displaces the light fluid promptly with more mixing in comparison with a low inflow rate. The results can help us to develop strategies for improving the dump bailing method in the P&A of the oil and gas wells.


2021 ◽  
Author(s):  
Wajid Ali ◽  
Freddy Jose Mata ◽  
Ahmed Atef Hashmi ◽  
Abdullah Saleh Al-Yami

Abstract Assurance of well integrity is critical and important throughout the entire well's life cycle. Pressure build-up between cemented casings annuli has been a major challenge all around the world. Cement is the main element that provides isolation and protection for the well. The cause for pressure build-up in most cases is a compromise of cement sheath integrity that allows fluids to migrate through micro-channels from the formation all the way to the surface. These problems prompt cementing technologists to explore new cementing solutions, to achieve reliable long-term zonal isolation in these extreme conditions by elevating shear bond strength along-with minimal shrinkage. The resin-cement system can be regarded as a novel technology to assure long term zonal isolation. This paper presents case histories to support the efficiency and reliability of the resin-cement system to avoid casing to casing annulus (CCA) pressure build-up. This paper presents lab testing and application of the resin-cement system, where potential high-pressure influx was expected across a water-bearing formation. The resin-cement system was designed to be placed as a tail slurry to provide a better set of mechanical properties in comparison to a conventional slurry. The combined mixture of resin and cement slurry provided all the necessary properties of the desired product. The slurry was batch-mixed to ensure the homogeneity of resin-cement slurry mixture. The cement treatment was performed as designed and met all zonal isolation objectives. Resin-cement’s increased compressive strength, ductility, and enhanced shear bond strength helped to provide a dependable barrier that would help prevent future sustained casing pressure (SCP). The producing performance of a well depends in great part on a good primary cementing job. The success of achieving zonal isolation, which is the main objective of cementing, is mainly attributed to the cement design. The resin-cement system is evolving as a new solution within the industry, replacing conventional cement in many crucial primary cementing applications. This paper highlights the necessary laboratory testing, field execution procedures, and treatment evaluation methods so that this technology can be a key resource for such operations in the future. The paper describes the process used to design the resin-cement system and how its application was significant to the success of the jobs. By keeping adequate strength and flexibility, this new cement system mitigates the risk of cement sheath failure throughout the life of well. It provides a long-term well integrity solution for any well exposed to a high-pressure environment.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Zhang ◽  
Zhiping Li ◽  
Fengpeng Lai ◽  
Hao Wu ◽  
Gangtao Mao ◽  
...  

One of the main techniques for the exploitation of shale oil and gas is hydraulic fracturing, and the fracturing fluid (slick water) may interact with minerals during the fracturing process, which has a significant effect on the shale pore structure. In this study, the pore structure and fluid distribution of shale samples were analyzed by utilizing low-pressure liquid nitrogen adsorption (LP-N2GA) and nuclear magnetic resonance (NMR). The fractal analysis showed that the pore structure of the sample was strongly heterogeneous. It was also found that the effect of slick water on pore structure can be attributed to two phenomena: the swelling of clay minerals and the dissolution of carbonate minerals. The swelling and dissolution of minerals can exist at the same time, and the strength of them at different soaking times is different, leading to the changes in specific surface area and pore size. After the samples were soaked in the slick water for two days, the contact angle reached the minimum value (below 8°), which means the sample is strongly hydrophilic; then the contact angle increased to above 38° with longer soaking times. The connected pore space in the shale matrix is enlarged by the soaking processing. Therefore, an in-depth understanding of the interaction between the fracking fluid and shale is essential to deepen our understanding of changes in the pore structure in the reservoir and the long-term productivity of shale gas.


2021 ◽  
Author(s):  
Parimal A. Patil ◽  
Prasanna Chidambaram ◽  
M Syafeeq Bin Ebining Amir ◽  
Pankaj K. Tiwari ◽  
Debasis P. Das ◽  
...  

Abstract Underground storage of CO2 in depleted gas reservoirs is a greenhouse gas reduction technique that significantly reduces CO2 released into the atmosphere. Three major depleted gas reservoirs in Central Luconia gas field, located offshore Sarawak, possess good geological characteristics needed to ensure long-term security for CO2 stored deep underground. Long-term integrity of all the wells drilled in these gas fields must be ensured in order to successfully keep the CO2 stored for decades/centuries into the future. Well integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. In order to analyze the risk associated with all 38 drilled wells, that includes 11 plugged and abandoned (P&A) wells and 27 active wells, probabilistic risk assessment approach has been developed. This approach uses various leakage scenarios, that includes features, events, and processes (FEP). A P&A well in a depleted reservoir is a very complex system in order to assess the loss of containment as several scenarios and parameters associated to those scenarios are difficult to estimate. Based on the available data of P&A wells, a well has been selected for this study. All the barriers in the example well have been identified and properties associated with those barriers are defined in order to estimate the possible leakage pathways through the identified barriers within that well. Detailed mathematical models are provided for estimating CO2 leakage from reservoir to the surface through all possible leakage pathways. Sensitivity analysis has been carried out for critical parameters such as cement permeability, and length of cement plug, in order to assess the containment ability of that well and understand its impact on overall well integrity. Sensitivity analysis shows that permeability of the cement in the annulus, and length of cement plug in the wellbore along with pressure differential can be used as critical set of parameters to assess the risk associated with all wells in these three fields. Well integrity is defined as the ability of the composite system (cemented casings string) in the well to contain fluids without significant leakage from underground reservoir up to surface. It has been recognized as a key performance factor determining the viability of any CCS project. This is the first attempt in assessing Well Integrity risk related to CO2 storage in Central Luconia Gas Fields in Sarawak. The wells have been looked individually in order to make sure that integrity is maintained, and CO2 is contained underground for years to come.


2021 ◽  
Author(s):  
Abdulmalek Shamsan ◽  
Alejandro De la Cruz ◽  
Walmy Jimenez

Abstract This study describes the approach used for enhancing the well integrity that was compromised with gas flow through a casing-casing annulus (CCA). Extremely tight injectivity at a CCA demands a solid free solution which not only can be injected but also resist high differential pressures to provide a long-term barrier in CCA. In this paper a successful leak remediation using an epoxy resin system helped the operator save a well and restart its production. Several pressure tests were conducted for identifying an extremely tight casing leak which was causing formation gas travelling to surface through the annulus. This issue required the customer to look for an efficient remedial solution to seal off the gas leakage and regain productivity. Due to the extremely low injectivity, a conventional cement squeeze or any solid laden particle-based squeeze approach was prone to fail. Alternatively, a tailored solid free epoxy resin system was placed in the annulus using an unconventional placement technique resulted in barrier enhancement and helped the operator place the well back into production. For a mature well flowing through 7 × 9 5/8‑in. and 9 5/8 × 13 3/8‑in., a tailored epoxy-based resin system formulation was placed in the well bore with modified surface operations procedures which helped in eliminating current annular pressure to regain well integrity and production. Remedial operations were performed from the surface by squeezing to seal off the gas coming from the annulus. A Tailored design derived from rigorous lab testing and perfect field execution resulted in CCA pressure remediation in a single attempt of the treatment injection, proving that the concept of using a solids-free resin to enhance existing deteriorated barriers is a reliable method. This epoxy resin system helped the operator to regain the well integrity and production in the shortest time without expensive well intervention operations. Epoxy resin based systems have been identified as a novel solution to remediate barrier integrity for well construction and workover operations, hence such case histories with enhanced operations procedures are helpful in increasing awareness of the benefits that can be attained in challenging high-pressure, low-injectivity environments, and can improve well economics.


2021 ◽  
Author(s):  
Barry Albert Lumankun ◽  
Diyah Ayu Adiningtyas ◽  
Cinto Azwar ◽  
Ahmed Osman ◽  
Rudi Hartanto ◽  
...  

ABSTRACT In the Oil and Gas industries, drilling a well in both exploration and development operations is becoming more challenging due to the reservoir location and complex reservoir system. A sophisticated high-cost well structure with complex trajectory, subsea system, or even operating in deep water is sometimes unavoidable. One of the crucial factors for a successful well construction operation is to achieve excellent well integrity by having good zonal isolation throughout the target reservoir section. This requires flawless primary cementation from cement job planning, design, and up to execution. The cement bond quality will need to be evaluated by performing the post job cement execution evaluation and wireline logging cement bond log survey. Supported with more stringent regulations, well integrity is becoming a fundamental aspect in drilling and production operations. This brings new challenges to cementing operations and subsequent cement evaluation. Flawless primary cementation is of great importance, from the job planning, design, to the execution. Post-job cement evaluations are needed by performing Pressure Match Post-Job Analysis and Wireline Logging Cement Bond Log Survey. Key parameters in designing optimum zonal isolation cement slurry is good understanding of the wellbore technical challenges and mitigating all geological and formation-related risks, such as narrow pressure margin, gas migration risk, etc. Light cement, complicated cement composition recipes, small cement - mud weight ratio are more common these days, supported with the developing technology in cementing. These, on the other side, would impact the cement bond evaluation. Good cement bond is crucial to ensure good zonal isolation across the reservoir intervals. Casing external coating, applied to protect casing strings from rusts, is another aspect affecting the cement bond, especially cement-to-casing bond. A more advanced cement bond evaluation tool will be required to cope with variety of cementing conditions, to enable producing undoubted log results. Thus, helping Operator in making decisions of subsequent well operations. This paper shows and presents different cement bond log interpretation results from four wells executed with a different method of implementations, performed in a development drilling campaign in Natuna Sea, offshore Indonesia in year 2019. The paper will focus on the 9-5/8" casing cementation, on which the cement bond evaluation became one of the main attentions.


Author(s):  
Raymos Kimanzi ◽  
Harshkumar Patel ◽  
Mahmoud Khalifeh ◽  
Saeed Salehi ◽  
Catalin Teodoriu

Abstract Cement plugs are designed to protect the integrity of oil and gas wells by mitigating movement of formation fluids and leaks. A failure of the cement sheath can result in the loss of zonal isolation, which can lead to sustained casing pressure. In this study, nanosynthetic graphite with designed expansive properties has been introduced to fresh cement slurry. The expansive properties of nanosynthetic graphite were achieved by controlling the preparation conditions. The material was made from synthetic graphite and has a surface area ranging from 325–375 m2/gram. Several tests including compressive strength, rheology, and thickening time were performed. An addition of 1% nanosynthetic graphite with appropriate reactivity was sufficient to maintain expansion in the cement system, leading to an early compressive strength development. It has excellent thermal and electrical conductivity and can be used to design a cement system with short and long-term integrity. Rheology and thickening time tests confirmed its pumpability. Controlling the concentration of the additive is a promising method that can be used to mitigate gas migration in gas bearing and shallow gas formations.


Author(s):  
Krunoslav Sedić ◽  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pašić

Well integrity related to carbon dioxide injection into depleted oil and gas reservoirs can be compromised by corrosion which can affect casing, downhole and surface equipment and well cement. Impact on well cement can cause overall degradation of set cement and lead to migration of carbon dioxide back to the surface. Thus, special types of cements should be used. One of the acceptable solutions is application of cement blends based on a mixture of Portland cement and pozzolans. The present paper deals with optimization of the cement slurry design containing zeolite which is nowadays widely used due to its high pozzolan activity potential. Cement blends containing 20%, 30% and 40% zeolite clinoptilolite were used. Cement slurries were optimized for application in slim hole conditions on CO2 injection wells on Žutica and Ivanić oil fields in Croatia (Europe), where an old and deteriorated production casing was re-lined with new smaller sized one. Results obtained by this study suggest that cement slurry containing zeolite can be optimized for application in well conditions related to CO2 injection and underground storage, ranging from a slim hole to standard size casing cement jobs which leads to an improvement of well integrity related to CO2 injection.


2021 ◽  
Author(s):  
Soheil Akbari ◽  
Seyed Mohammad Taghavi

Abstract Plug and abandonment (P&A) of oil and gas wells is receiving an increased attention. The P&A operation is performed by placing a barrier, such as a cement plug to avoid reservoir fluids migration toward aquifers. To fulfill these requirements, the desired cement plug should be placed in the wellbore with minimum mixing with the in-situ fluid. A rigless way for placing cement slurry in the wellbore is through the dump bailing method, in which a relatively small amount of cement slurry is injected on a mechanical barrier inside the well to replace the in-situ wellbore fluids (mostly fresh water). The dynamics of the fluid placement is governed by several parameters, such as the flow and geometry parameters, and the fluid properties. In this study, we analyze the fluid mechanics of the dump bailing method, via experimentally investigating the effects of the viscosity ratio between the replacing and replaced fluids in the process. The viscosities of the fluids involved have significant effects on the mixing and placement flow quality. In our experiments, the fluid placement is carried out in a near-vertical closed-end pipe (i.e. representative of the well casing) to replace an in-situ light fluid. The two fluids are considered to be miscible, and they have a fixed density difference. Our results show that the most efficient placement happens with the injection of the higher viscous fluid. The outcomes of this study can be used for improving the cementing processes in the dump-bailing method of P&A operations.


Sign in / Sign up

Export Citation Format

Share Document