Fatigue Performance of High Strength and Large Diameter Mooring Chain in Seawater

Author(s):  
Yan-Hui Zhang ◽  
Philip Smedley

Abstract Fatigue design recommendations provided by API RP 2SK, ISO 19901-7 and DNVGL-OS-E301 for studless chain links are based on data of steel grades R3 and R4 and mainly of link diameter of 76mm. Mooring systems utilising larger diameter links and higher strength steels (e.g. grade R5) are now in operation. Consequently, industry expressed a need for fatigue test data in seawater of higher steel grade and larger diameter chain to confirm whether the existing fatigue design guidance is applicable. A joint industry project (JIP) was launched by TWI to investigate fatigue performance of high strength and large diameter mooring chain in free corrosion seawater. A test rig was designed and manufactured which was capable of testing studless mooring chain links up to 127mm link diameter under tension-tension loading. Twenty-three full-scale fatigue tests were conducted on high strength steel grades (R4 and R5) and larger diameter chains (76mm and 127mm) generating 72 link failures. Magnetic particle inspections (MPI) were carried out to characterise the location of cracking, crack size and crack growth rate. This paper describes the results obtained in the JIP.

Author(s):  
Lucile Rampi ◽  
Pedro Vargas

Three years ago, several mooring chains of an off-loading buoy failed after only 8 months of service. These chains were designed according to conventional fatigue assessment using API RP 2SK T-N curves to a fatigue life or 20 years with a factor of safety equal to 3 on life. Of particular interest is that the mooring chain failure underwent significant mooring chain motions that caused interlink rotations. Although traditionally neglected, these interlink rotations, when combined with significant chain tensions can cause bending stresses in the chain links (See Figure 1). This recently identified phenomena, Out-of-Plane Bending (OPB), explains the extensive fatigue damage causing the mooring chains of the off-loading buoy to fail [3][4][5]. References [3] and [4] document full scale tests of the OPB mechanism using a full scale test frame with the ability of applying inter-link rotation to a pre-tensioned chain. This testing confirmed that interlink rotations with a constant tension load can result in significantly high stresses. OPB stresses were measured on four different chain sizes of various grades: 1) 81 mm Studded Grade R3S, 2) 107 mm Stud-less Grade RQ3, 3) 124 mm Stud-less Grade R4, and 4) 146 mm Stud-less Grade RQ4, Grade R3 in [3] and [4], but no actual fatigue tests were performed. References [3] and [5] document analytical and computational efforts to explain and quantify the OPB stresses. In this paper, special focus is placed on obtaining actual fatigue failures of chains from OPB loading. Smaller chain sizes (40 mm) are used to accommodate the load limits of the testing frame. To mimic the actual loading as close as possible, sub size models of actual chainhawses were used in the testing. Two chainhawses were used: 1) the chainhawse has internal curvature where a link rests on the intrados, similar to offloading buoy that failed in eight months, and 2) a straight chainhase, a design that is in use today with demonstrated improved fatigue performance over the curved chainhawse. OPB stresses are measured and reported. Fatigue loading in the OPB mode was applied for several configurations. The two chainhawse exhibit very different stress levels and fatigue performance. An empirical relationship previously reported in [3][4][5] is compared to the measured OPB stresses with mixed results. Although limited in number, the fatigue tests indicate that overall the chain fatigue performance is at or above the B1 DnV curve. The BS B1 curve is also compared.


Author(s):  
Jonathan Fernández ◽  
Walther Storesund ◽  
Jesús Navas

With more than 50.000 tons in service to date, the Oil&Gas Industry has the need to understand the tension fatigue performance of grade R5 chains in straight tension, and corroborate the validity of the existing design methods. The chain fatigue design curves in API and DNV are based on fatigue tests obtained in the nineties and early two thousands. However the tests were performed on lower grades such as ORQ, R3 and R4, and small chains, 76 mm diameter being the largest studless chain tested. The industry has moved towards the use of large studless chains, especially in permanent units, where chain diameters above 150 mm are not unusual. This paper gathers information from a full scale fatigue test program on grade R4 and R5 studless chains, performed in seawater and with diameters between 70 mm and 171 mm. The chains being tested are actual production chains supplied for different drilling units and large permanently moored production floating units. The paper analyses the data and determines tension-tension fatigue curves based on API and DNV methods for computation of cumulative fatigue damage, regardless of other damaging mechanisms. Improved fatigue capacity is obtained with respect to the above recommended design methods.


Author(s):  
Jaime Buitrago ◽  
Michael S. Weir ◽  
Wan C. Kan

With the advent of the development of deepwater projects, ExxonMobil developed and successfully implemented a fatigue design and verification protocol for fracture-critical components, such as risers and tendons, to ensure design performance and reliability. This protocol has now become an industry practice. This paper discusses the analytical, fabrication, and testing aspects of the design process. The linkage among actual weld performance, welding procedures and inspection reliability is addressed. From the design implementation standpoint, reliability of the fabrication inspection is the key issue. Practical methodologies were developed to conduct and interpret the fatigue tests. In particular, specimen design, instrumentation, testing protocols, and postmortem examination are discussed. Data generated by testing 56 full-scale risers of various sizes and welded by different procedures are also presented. These data, including tests past 100 million cycles, show that (1) actual riser fatigue performance can be substantially better than that recommended by codes, (2) failures can occur in the long-life regime, and (3) fatigue performance varies with riser size and thickness. However, as a matter of practice, analyses, fabrication and testing are required for particular designs.


Author(s):  
Stephen J. Maddox ◽  
Julian B. Speck ◽  
G. Reza Razmjoo

Increasing deep-water oil and gas recovery has highlighted the need for high integrity, high fatigue performance girth welds in steel catenary riser systems. Such systems include girth welds made from one side. However, the widely used fatigue design classification, UK Class F2, for such welds is not well founded, but probably overconservative for pipeline welds. In an attempt to justify upgrading current fatigue design classifications and providing a better basis for design, fatigue tests were performed on a range of girth-welded pipes produced by pipeline welding contractors. This paper presents the results of those tests and their evaluation in terms of the factors that influence the fatigue performance of girth welds, including welding process, welding position, backing system, joint alignment, weld quality, specimen type, and fatigue loading conditions. Conclusions are drawn regarding the scope for adopting higher design classifications and the conditions that must be met to justify them.


2018 ◽  
Vol 165 ◽  
pp. 22015
Author(s):  
Sergi Parareda ◽  
Antoni Lara ◽  
Henrik Sieurin ◽  
Héber D´Armas ◽  
Daniel Casellas

Advanced High Strength Steels (AHSS) have been widely applied in the automotive industry as an affordable solution for car lightweighting, mainly in parts subjected to crash requirements. Heavy duty vehicle (HDV) can also benefit from the expertise learned in cars, but parts must be designed considering fatigue resistance, especially on trimmed areas, and stiffness. Mechanical surface treatments, as blasting or shot peening, help increasing fatigue life of AHSS in trimmed areas and will allow weight reduction in HDV through gauge downsizing. The expected decrease in stiffness through thickness reduction can be improved by design changes. However, scarce information about the effect of mechanical surface treatments on AHSS are available. Thus, the aim of this work is to evaluate the increment in fatigue life of two different steel grades (350 MPa, and 500MPa of yield strength) in thick sheet by means of mechanical surface treatment – sandblasting. High Cycle Fatigue [HCF] tests were conducted at alternating load [R=-1]. Residual stresses were measured by an X-ray tensometry prior fatigue tests. Also the surface roughness [Rz] and form is measured using an optical non-contact 3D microscope. On the other hand, the fracture surfaces of the test specimens were observed via scanning electron microscope (SEM) in order to determine the crack initiation points. The evaluation of fatigue life in terms of SN curves is also discussed, analysing how the sandblasting process modifies the surface roughness and introduce compressive residual stresses on the external layer of the material. Both phenomena enhance the fatigue strength of the evaluated steel grades.


Author(s):  
Stephen J. Maddox ◽  
Julian B. Speck ◽  
G. Reza Razmjoo

Increasing deep-water oil and gas recovery has highlighted the need for high integrity, high fatigue performance girth welds in steel catenary riser systems. Such systems include girth welds made from one side. However, the widely used fatigue design classification, UK Class F2, for such welds is not well founded, but probably over-conservative for pipeline welds. In an attempt to justify upgrading current fatigue design classifications and providing a better basis for design, fatigue tests were performed on a range of girth-welded pipes produced by pipeline welding contractors. This paper presents the results of those tests and their evaluation in terms of the factors that influence the fatigue performance of girth welds, including welding process, welding position, backing system, joint alignment, weld quality, specimen type and fatigue loading conditions. Conclusions are drawn regarding the scope for adopting higher design classifications and the conditions that must be met to justify them.


2021 ◽  
Vol 349 ◽  
pp. 04007
Author(s):  
Michail Malikoutsakis ◽  
Christos Gakias ◽  
Ioannis Makris ◽  
Peter Kinzel ◽  
Eckehard Müller ◽  
...  

Leaf springs constitute the most effective suspension way of commercial vehicle axles from the cost and maintainability point of view. Especially in case of front axles, they overtake both the guidance and suspension functions, which consequently designates them as safety components, whose pre-mature failure is explicitly prohibited. The present paper deals with the fatigue performance of downsized parabolic leaf specimens made of the high-strength spring steel 51CrV4 under serial manufacturing conditions. It focuses on the influence of the major manufacturing steps, i.e. the heat treatment and the subsequently applied stress shot peening. The effectiveness of the applied heat treatment on the microstructure transformation and the extent of surface decarburization is determined by means of optical microscopy and corresponding microstructural analyses. Comprehensive series of constant amplitude fatigue tests are executed before and after the applied stress shot peening to quantify its effectiveness on the fatigue performance. The tests cover two characteristic stress ratios of operational significance with the complete range of interest being experimentally investigated. Additionally, surface residual stresses measurements together with micro- and macro-hardness and roughness values before and after stress shot peening are executed to expose the influence of each individual technological effect on the overall fatigue performance.


Author(s):  
Alberto Arredondo ◽  
Jonathan Fernández ◽  
Elena Silveira ◽  
José Luís Arana

With a majority of the reported chain failures related to fatigue, this phenomenon is one of the main topics to be studied as part of Mooring Integrity Management. Present fatigue design is mainly based on fatigue curves for chains under tension-tension loads in seawater. However, the applicability of these curves for different loading modes and specific environments remains unclear. This paper studies the fatigue behavior of the material used on chains as it builds the baseline for the performance of these mooring components. It includes uniaxial fatigue tests that were undertaken on R4 and R5 steel grades obtained from actual chains after all their manufacturing steps. Samples were not only tested in air and in synthetic seawater but different corrosion related parameters were also studied: frequency, temperature and cathodic protection. From the results of these tests, separated SN curves were obtained. Subsequently, these curves were analyzed and compared against present recommended design curves for material. Fractographic examination was undertaken to assess the effect of corrosion and cathodic protection and comparison between material and component response was also addressed. Results showed the strong synergy between corrosion and fatigue. Also, the improvement from fatigue design curves to actual response of the materials was quantified.


2003 ◽  
Vol 125 (3) ◽  
pp. 287-292 ◽  
Author(s):  
John H. Underwood ◽  
Edward Troiano

Fast fracture in cannons can be well described using elastic-plastic fracture toughness, in combination with comparisons of cannon section size relative to the size required to maintain plane strain fracture. Fatigue fracture of cannon tubes is modeled from results of full-size fatigue tests that simulate cannon firing. These tests are also the basis of fatigue-intensity-factor modeling of fatigue life, which incorporates material strength, initial crack size and Bauschinger-modified autofrettage residual stress into life predictions. Environment-assisted fracture in the thermally damaged near-bore region of fired cannons is shown to be controlled by hydrogen. High strength cannon steels are susceptible to hydrogen; cannon propellant gases provide the hydrogen; and the source of sustained tensile stress is the near-bore thermal damage and compressive yielding. A thermo-mechanical model predicts tensile residual stress of similar depth to that of observed hydrogen cracks. Coating fracture in the thermal-damage region of fired cannons is characterized and modeled. The Evans/Hutchinson slip zone concept is extended to calculate in-situ coating fracture strength from observed crack spacing and hardness in the damaged region.


2018 ◽  
Vol 188 ◽  
pp. 02014
Author(s):  
Efstratios Giannakis ◽  
Elli Sivena ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Stabilisers are components of the axle suspension system of cars trucks, trains and other moving road vehicles that connect the movement of the two sides of the suspension (right and left) to keep the vehicle levelled. Stabilizers experience bending and torsion at operation. In particular, their arms experience bending while the main body mainly torsional loading. In both cases, the highly stressed area is the surface, where the maximum tensile and shear stresses are acting. High strength steels and special treatments, thermal and/or mechanical, are used for the stabilisers’ manufacturing. The present study deals with necessary input data for fatigue life assessments based on the FKM guideline [1]. In addition, fatigue tests are conducted to calculate the stress-life curves of two different manufacturing processes.


Sign in / Sign up

Export Citation Format

Share Document