Time-Varying Vector Field Guidance Law for Path Following and Obstacle Avoidance for Underactuated Autonomous Vehicles

Author(s):  
Haitong Xu ◽  
M. A. Hinostroza ◽  
C. Guedes Soares

Abstract This paper presents a time-varying vector field guidance law for path-following control of underactuated autonomous vehicles. The proposed guidance law employs a time-varying equation to calculate the desired heading angle. A sliding mode controller is designed to track the desired heading angle, and it is proved to be globally exponentially stable (GES). With this controller, the stability proof for guidance system is presented and the equilibrium point of the guidance system is Uniform Global Asymptotic Stable (UGAS). In order to avoid the obstacle when ship approaching the predefined path, a combined Path-following and repelling field based obstacle avoidance system is proposed in this paper. Simulations are carried out to validate the performance of the combined path-following and collision avoidance system.

2020 ◽  
Vol 162 (A3) ◽  
Author(s):  
Haitong Xu ◽  
C Guedes Soares

A vector field guidance law and control system for curved path following of an underactuated surface ship model is presented in this paper. In order to obtain the curved path, continuous derivatives piecewise cubic Hermite interpolation is applied for path generation based on the predefined waypoints. A heading autopilot controller is designed based on 2nd order Nomoto’s model and its stability is guaranteed by the Diagram of Vyshnegradsky method. The parameters of Nomoto model are estimated using least square support vector machine based on the manoeuvring tests. The vector field guidance law is applied for both straight and curved path-following control of an underactuated surface ship model. In order to demonstrate the performance, the classical guidance law based on line-of-sight, is adopted for comparison. The results show that the vector field method is capable to solve the guidance problem of underactuated surface ships.


Author(s):  
Haitong Xu ◽  
C Guedes Soares

A vector field guidance law and control system for curved path following of an underactuated surface ship model is presented in this paper. In order to obtain the curved path, continuous derivatives piecewise cubic Hermite interpolation is applied for path generation based on the predefined waypoints. A heading autopilot controller is designed based on 2nd order Nomoto’s model and its stability is guaranteed by the Diagram of Vyshnegradsky method. The parameters of Nomoto model are estimated using least square support vector machine based on the manoeuvring tests. The vector field guidance law is applied for both straight and curved path-following control of an underactuated surface ship model. In order to demonstrate the performance, the classical guidance law based on line-of-sight, is adopted for comparison. The results show that the vector field method is capable to solve the guidance problem of underactuated surface ships.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2017 ◽  
Vol 65 (2) ◽  
pp. 233-245
Author(s):  
Y. Wang ◽  
M. Sun ◽  
S. Du ◽  
Z. Chen

Abstract Target manoeuvre is one of the key factors affecting guidance accuracy. To intercept highly maneuverable targets, a second-order sliding-mode guidance law, which is based on the super-twisting algorithm, is designed without depending on any information about the target motion. In the designed guidance system, the target estimator plays an essential role. Besides the existing higher-order sliding-mode observer (HOSMO), a first-order linear observer (FOLO) is also proposed to estimate the target manoeuvre, and this is the major contribution of this paper. The closed-loop guidance system can be guaranteed to be uniformly ultimately bounded (UUB) in the presence of the FOLO. The comparative simulations are carried out to investigate the overall performance resulting from these two categories of observers. The results show that the guidance law with the proposed linear observer can achieve better comprehensive criteria for the amplitude of normalised acceleration and elevator deflection requirements. The reasons for the different levels of performance of these two observer-based methods are thoroughly investigated.


2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yao Yang ◽  
Yang Xu ◽  
Pei Wang

To explore the influence of the trace point step-jump behavior on a terminal guidance system, an analysis is performed from the line-of-sight rate (LOS rate) and guidance accuracy views for designing an anti-step-jump guidance law. First, the linear terminal guidance model under the trace point jump circumstance is constructed, and then the fundamental reason for the miss distance is investigated by deriving the upper bound of the LOS rate at the initial step-jump moment. Following this, the novel proposed analytical differential adjoint model is established with the adjoint method, and its validity is demonstrated comparing with the numeric derivative model. Based on the adjoint model, the effects of the ratio coefficient, the time constant, and the jump amplitude on the guidance accuracy are explored. Finally, a novel anti-step-jump guidance law is designed to shorten the recovery time of the overload. The simulations have shown that the faster recovery time and higher accuracy are achieved in comparison with the proportional navigation guidance, optimal guidance, and adaptive sliding mode guidance.


Sign in / Sign up

Export Citation Format

Share Document