Numerical Study of a Multipurpose Power Generator Using the Finite Element Method

Author(s):  
J. Agbormbai ◽  
N. Goudarzi ◽  
W. D. Zhu

Analytical and experimental analyses of a variable electromotive-force generator (VEG) show the advantages of this modified generator in hybrid electric vehicle and wind turbine applications with enhancing the fuel efficiency and expanding the operational range, respectively. In this study, electromagnetic analysis of a modified two-pole DC generator with an adjustable overlap between the rotor and the stator is studied using 3-D finite element simulation in ANSYS. The generator stator is modeled with two opposite pole pieces whose arcs span between 15° to 90° in the counterclockwise direction and −15° to −90° in the clockwise direction. A semicircular cylinder whose arc spans between −90° and 90° is used to model the generator rotor. A tetrahedral mesh is used to provide a solution for changes in the electromotive force at different frequencies and overlap ratios. For a constant electromagnetic flux density and fixed number of coils, the changes in the electromotive force at different overlap ratios between the rotor and the stator are obtained in static conditions. There is a very good correlation between the results from simulation and those from analytical and experimental studies.

Author(s):  
J. Agbormbai ◽  
N. Goudarzi ◽  
W. D. Zhu

A modified generator, referred to as the variable electromotive-force generator, is developed to enhance fuel efficiency of hybrid vehicles and expand operational range of wind turbines. Obtaining a numerical model that provides accurate estimates on the generator output power at different overlap ratios and rotor speeds, comparable with those from experimental results, would expand the use of the proposed modified generator in different applications. The general behavior of the generated electromotive forces at different overlaps and rotor speeds is in good agreement with those from experimental and analytical results at steady-state conditions. Employing generator losses due to hysteresis and eddy currents in a three-dimensional model would generate more realistic and comparable results with those from experiment. In this work, electromagnetic analysis of a modified two-pole DC generator with an adjustable overlap between the rotor and the stator at transient conditions is performed using finite element simulation in the ANSYS 3D Low Frequency Electromagnetics package. The model is meshed with tetrahedral or hexahedral elements, and the magnetic field at each element is approximated using a quadratic polynomial. For a fixed number of coils, two cases are studied; one with constant magnetic properties and the other with nonlinear demagnetization curves are studied.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Ebrahim Karimi-Sibaki ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
...  

AbstractA numerical study is presented that deals with the flow in the mold of a continuous slab caster under the influence of a DC magnetic field (electromagnetic brakes (EMBrs)). The arrangement and geometry investigated here is based on a series of previous experimental studies carried out at the mini-LIMMCAST facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The magnetic field models a ruler-type EMBr and is installed in the region of the ports of the submerged entry nozzle (SEN). The current article considers magnet field strengths up to 441 mT, corresponding to a Hartmann number of about 600, and takes the electrical conductivity of the solidified shell into account. The numerical model of the turbulent flow under the applied magnetic field is implemented using the open-source CFD package OpenFOAM®. Our numerical results reveal that a growing magnitude of the applied magnetic field may cause a reversal of the flow direction at the meniscus surface, which is related the formation of a “multiroll” flow pattern in the mold. This phenomenon can be explained as a classical magnetohydrodynamics (MHD) effect: (1) the closure of the induced electric current results not primarily in a braking Lorentz force inside the jet but in an acceleration in regions of previously weak velocities, which initiates the formation of an opposite vortex (OV) close to the mean jet; (2) this vortex develops in size at the expense of the main vortex until it reaches the meniscus surface, where it becomes clearly visible. We also show that an acceleration of the meniscus flow must be expected when the applied magnetic field is smaller than a critical value. This acceleration is due to the transfer of kinetic energy from smaller turbulent structures into the mean flow. A further increase in the EMBr intensity leads to the expected damping of the mean flow and, consequently, to a reduction in the size of the upper roll. These investigations show that the Lorentz force cannot be reduced to a simple damping effect; depending on the field strength, its action is found to be topologically complex.


Author(s):  
Vetle Espeseth ◽  
David Morin ◽  
Jonas Faleskog ◽  
Tore Børvik ◽  
Odd Sture Hopperstad

2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


2016 ◽  
Vol 61 (1) ◽  
pp. 149-152 ◽  
Author(s):  
L.W. Żukowska ◽  
A. Śliwa ◽  
J. Mikuła ◽  
M. Bonek ◽  
W. Kwaśny ◽  
...  

The general topic of this paper is the computer simulation with use of finite element method (FEM) for determining the internal stresses of selected gradient and single-layer PVD coatings deposited on the sintered tool materials, including cemented carbides, cermets and Al2O3+TiC type oxide tool ceramics by cathodic arc evaporation CAE-PVD method. Developing an appropriate model allows the prediction of properties of PVD coatings, which are also the criterion of their selection for specific items, based on the parameters of technological processes. In addition, developed model can to a large extent eliminate the need for expensive and time-consuming experimental studies for the computer simulation. Developed models of internal stresses were performed with use of finite element method in ANSYS environment. The experimental values of stresses were calculated using the X-ray sin2ψ technique. The computer simulation results were compared with the experimental results. Microhardness and adhesion as well as wear range were measured to investigate the influence of stress distribution on the mechanical and functional properties of coatings. It was stated that occurrence of compressive stresses on the surface of gradient coating has advantageous influence on their mechanical properties, especially on microhardness. Absolute value reduction of internal stresses in the connection zone in case of the gradient coatings takes profitably effects on improvement the adhesion of coatings. It can be one of the most important reasons of increase the wear resistance of gradient coatings in comparison to single-layer coatings.


2001 ◽  
Vol 28 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Bruce F Sparling ◽  
Alan G Davenport

Large amplitude cable vibrations are difficult to predict using linear theory due to the presence of sag in the suspended profile. A numerical study was therefore undertaken to investigate the dynamic behaviour of inclined cables excited by imposed displacements. To model the nonlinear nature of cable response, a time domain finite element approach was adopted using nonlinear catenary cable elements. Two types of horizontal displacement patterns were enforced at the upper end of the guy. In the first phase of the study, harmonic displacement histories with a wide range of forcing frequencies were considered. In the second phase, random enforced displacements were used to simulate the motion of a guyed mast in gusty winds. The influence of aerodynamic drag and damping forces was investigated by performing analyses under still air, steady wind, and turbulent wind conditions. It was found that nonlinear coupling of related harmonic response components was significant at certain critical frequencies, particular when the excitation was harmonic and acted in the plane of the guy. Positive aerodynamic damping was shown to effectively suppress resonant and nonlinear coupling response.Key words: cables, structural dynamics, wind loading, finite element method, nonlinear analysis, guyed towers.


Sign in / Sign up

Export Citation Format

Share Document