Numerical Modeling and Simulation of Injection Cooling and Wet Gas Compression

Author(s):  
Shyam Kishor

This paper presents application of Computational Fluid Dynamics (CFD) in modeling wet gas compression in a multiphase compressor, where liquid is injected inside the compression chamber to enhance cooling and achieve near isothermal compression. CFD is used for detailed flow field and heat transfer analysis. It includes 3D transient simulations of multiphase compressible turbulent flow. During each cycle, compression and suction chambers keep moving and deforming. Computational domains include a gate that separates compression chamber from the suction chamber. Gate moves up and down to always remain in contact with the rotor. A custom program is used to prescribe motion for the moving and deforming domain. Eulerian-Lagrangian method is used to model continuous and discrete (atomized droplets) phases and their interaction. Droplet dynamics under the influence of turbulence, acceleration, diffusion and body forces are studied. Models to capture droplet breakup and coalescence are included. Results from CFD simulations are used to optimize compressor performance. Temperature and pressure variations during the compression cycle are presented. Most of the pressure and temperature rise occurs towards the end of the compression cycle. Atomization details including droplets trajectory, droplet size distribution and droplet velocity variations are presented. Temperature distribution inside the compression chamber is used to optimize location, size, and flow rate of liquid injections.

2021 ◽  
Vol 15 ◽  
pp. 223-232
Author(s):  
Sharul Sham Dol ◽  
Niraj Baxi ◽  
Mior Azman Meor Said

By introducing a multiphase twin screw pump as an artificial lifting device inside the well tubing (downhole) for wet gas compression application; i.e. gas volume fraction (GVF) higher than 95%, the unproductive or commercially unattractive gas wells can be revived and made commercially productive once again. Above strategy provides energy industry with an invaluable option to significantly reduce greenhouse gas emissions by reviving gas production from already existing infrastructure thereby reducing new exploratory and development efforts. At the same time above strategy enables energy industry to meet society’s demand for affordable energy throughout the critical energy transition from predominantly fossil fuels based resources to hybrid energy system of renewables and gas. This paper summarizes the research activities related to the applications involving multiphase twin screw pump for gas volume fraction (GVF) higher than 95% and outlines the opportunity that this new frontier of multiphase fluid research provides. By developing an understanding and quantifying the factors that influence volumetric efficiency of the multiphase twin screw pump, the novel concept of productivity improvement by a downhole wet gas compression using above technology can be made practicable and commercially more attractive than other production improvement strategies available today. Review and evaluation of the results of mathematical and experimental models for multiphase twin screw pump for applications with GVF of more than 95% has provided valuable insights in to multiphase physics in the gap leakage domains of pump and this increases confidence that novel theoretical concept of downhole wet gas compression using multiphase twin screw pump that is described in this paper, is practically achievable through further research and improvements.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Lei Zhao ◽  
Ting Wang

A phase Doppler particle analyzer (PDPA) system is employed to measure the two-phase mist flow behavior including flow velocity field, droplet size distribution, droplet dynamics, and turbulence characteristics. Based on the droplet measurements made through PDPA, a projected profile describing how the air-mist coolant jet flow spreads and eventually blends into the hot main flow is proposed. This proposed profile is found to be well supported by the measurement results of the turbulent Reynolds stresses. The coolant film envelope is identified with shear layers characterized by higher magnitudes of turbulent Reynolds stresses. In addition, the separation between the mist droplet layer and the coolant air film is identified through the droplet measurements—large droplets penetrate through the air coolant film layer and travel further into the main flow. With the proposed air-mist film profile, the heat transfer results on the wall presented in Part I are re-examined and more in-depth physics is revealed. It is found that the location of the optimum cooling effectiveness coincides with the point where the air-mist coolant stream starts to bend back towards the surface. Thus, the data suggests that the “bending back” film pattern is critical in keeping the mist droplets close to the surface, which improves the cooling effectiveness for mist cooling.


2011 ◽  
Author(s):  
Mads Hjelmeland ◽  
Arne B. Olsen ◽  
Rudi Marjohan
Keyword(s):  
Wet Gas ◽  

Author(s):  
O̸yvind Hundseid ◽  
Lars E. Bakken ◽  
Trond G. Gru¨ner ◽  
Lars Brenne ◽  
Tor Bjo̸rge

This paper evaluates the performance analysis of wet gas compression. It reports the performance of a single stage gas centrifugal compressor tested on wet gas. These tests were performed at design operating range with real hydrocarbon mixtures. The gas volume fraction was varied from 0.97 to 1.00, with alternation in suction pressure. The range is representative for many of the gas/condensate fields encountered in the North Sea. The machine flow rate was varied to cover the entire operating range. The compressor was also tested on a hydrocarbon gas and water mixture to evaluate the impact of liquid properties on performance. No performance and test standards currently exist for wet gas compressors. To ensure nominated flow under varying fluid flow conditions, a complete understanding of compressor performance is essential. This paper gives an evaluation of real hydrocarbon multiphase flow and performance parameters as well as a wet gas performance analysis. The results clearly demonstrate that liquid properties influence compressor performance to a high degree. A shift in compressor characteristics is observed under different liquid level conditions. The results in this paper confirm the need for improved fundamental understanding of liquid impact on wet gas compression. The evaluation demonstrates that dry gas performance parameters are not applicable for wet gas performance analysis. Wet gas performance parameters verified against results from the tested compressor is presented.


2018 ◽  
Vol 7 (1) ◽  
pp. 710
Author(s):  
Danu Ariono ◽  
Dwiwahju Sasongko ◽  
Priyono Kusumo

To date, evaluation of the performance of liquid-liquid extraction in packed columns has not been able to produce satisfactory results, because the correlations used in this evaluation are empirical in nature, with a very limited range of validity. One of the causes of this limitation is the use of the assumption that the dynamics of liquid dispersed in droplets is constant (in terms of shape, dimensions, and numbers), so that the mass transfer interfacial area and mass transfer coefficient in the column are assumed to be constant. In reality, dynamics of droplets in a column is not constant, due to the imbalance between droplet coalescence and disintegration. For a given droplet diameter, there is an increase in numbers of droplets due to coalescence of smaller droplets, and a  decrease in numbers of droplets due to disintegration into smaller droplets. These coalescence and disintegration phenomena may be caused by various factors, including the existence of packings which impede the flow of droplets. These phenomena impact the mass transfer rate from continuous to dispersed phase, and vice versa, due to a variation in the interfacial contact area and mass transfer coefficient. The observation of droplet dynamics from droplet formation until its motion through void spaces between packings is a critical factor in developing a model that can describe the performance of the packed column. The dynamics of droplets is influenced by various operational and physical variables.  A droplet dynamics experiment has been undertaken, aimed at obtaining the droplet size distribution at specific heights along the column. This distribution is to be used to develop mass transfer coefficient correlations in the continuous and dispersed phases.Keywords: droplet size distribution, packed column Abstrak Evaluasi unjuk kerja ekstraksi cair-cair dalam kolom isian (packed column) hingga saat ini belum dapat memberikan hasil yang memuaskan karena korelasi-korelasi yang  digunakan  masih  bersifat  empiris serta daerah keberlakuannya sangat terbatas. Salah satu penyebab keterbatasan berlakunya korelasi tersebut ialah penggunaan anggapan bahwa dinamika cairan yang terdispersi dalam bentuk tetesan bersifat konstan (bentuk, ukuran serta jumlahnya), sehingga harga luas perpindahan massa dan harga koefisien perpindahan massa dalam kolom dianggap tetap. Kenyataannya dinamika tetesan dalam kolom tidak konstan akibat adanya tetesan yang bergabung dan pecah dalam jumlah yang  tidak sama. Pada suatu harga diameter tetesan tertentu, ada penambahan jumlah tetesan akibat penggabungan tetesan­ tetesan yang ukurannya lebih kecil serta adanya pengurangan jumlah tetesan akibat pecahnya tetesan menjadi tetesan-tetesan yang lebih kecil. Peristiwa penggabungan dan pemecahan tetesan dapat disebabkan berbagai faktor temasuk adanya isian yang menghalangi gerakan tetesan. Kejadian tersebut akan mempengaruhi laju proses perpindahan massa dari fasa kontinyu ke fasa  terdispersi  atau sebaliknya, karena adanya variasi luas permukaan kontak serta koefisien perpindahan massanya. Pengamatan dinamika tetesan mulai saat pembentukan tetes hingga pergerakannya saat melewati sela-sela isian merupakan faktor penting dalam  membangun model  yang  dapat menggambarkan unjuk kerja kolom isian. Dinamika tetesan tersebut dipengaruhi oleh berbagai variabel operasi dan variabel fisik. Eksperimen dinamika fetes yang dilakukan diarahkan untuk memperoleh distribusi ukuran tetes pada posisi ketinggian tertentu dan distribusi tersebut akan digunakan untuk pengembangan  korelasi koefisien perpindahan massa difasa  dispersi danfasa kontinyu.Kata kunci: distribusi ukuran tetes, kolom isian.


Author(s):  
Grant O. Musgrove ◽  
Melissa A. Poerner ◽  
Griffin Beck ◽  
Rainer Kurz ◽  
Gary Bourn

In oil and gas applications, gas-liquid mixtures of a process fluid are commonplace and the phases of the mixtures are separated upstream of pump or compressor machinery. Considering compressors, the separation of phases is important because the liquid causes the compressor to operate significantly different than with dry to affect the range, performance, and durability of the machine. Even with separation equipment, liquid can be ingested in a compressor by liquid carryover from the separator or condensation of the process gas. Additionally, there is no single definition of what is considered a wet gas. In this paper, the definition of wet gas from multiple applications is reviewed and a general definition for wet gas is formulated. The effects of wet gas on reciprocating, screw-type, and centrifugal compressors are reviewed to provide insight into how their operation is affected. The limited information for screw compressors is supplemented with multiphase effects in screw pumps.


2011 ◽  
Author(s):  
Mads Hjelmeland ◽  
Arne B. Olsen ◽  
Rudi Marjohan
Keyword(s):  
Wet Gas ◽  

2020 ◽  
Author(s):  
Lukas Nader ◽  
David Biddick ◽  
Herman Artinian ◽  
Pandurang Kulkarni ◽  
Bob Van Hoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document