Seismic Isolation Design Code for Highway Bridges

Author(s):  
Kazuhiko Kawashima ◽  
Shigeki Unjoh

This paper presents the seismic isolation design code for highway bridges. This is based on the 1996 Design Specifications for Highway Bridges, Part. V: Seismic Design, issued by the Japan Road Association in December 1996. This paper focuses on the outlines of the seismic isolation design code including the seismic design basic principles, design ground motion, and seismic isolation design.

1994 ◽  
Vol 10 (2) ◽  
pp. 333-356 ◽  
Author(s):  
Kazuhiko Kawashima ◽  
Kinji Hasegawa

This paper presents the new seismic design specifications for highway bridges issued by the Ministry of Construction in February 1990. Revisions of the previous specifications were based on the damage characteristics of highway bridges that were developed after the recent earthquakes. The primary revised items include the seismic lateral force, evaluation of inertia force for design of substructures considering structural response, checking the bearing capacity of reinforced concrete piers for lateral load, and dynamic response analysis. Emphasis is placed on the background of the revisions introduced in the new seismic design specifications.


Author(s):  
W. I. Liao ◽  
C. H. Loh ◽  
J. F. Chai

This paper describes the development of seismic design provisions of highway bridges will be revised in Taiwan reflecting the destructive damage in the 1999 Chi-Chi earthquake. After the Chi-Chi earthquake, the revised seismic design force and other related requirements in the seismic design code for highway bridges are developed in Taiwan. In addition to the conventional force based design, a capacity checking level is considered for the near-fault sites by limiting the ultimate capacity to exceed the maximum possible seismic demand. The development of seismic design force and the capacity check method are described.


2003 ◽  
Vol 19 (4) ◽  
pp. 913-932 ◽  
Author(s):  
W. P. Yen ◽  
J. D. Cooper ◽  
S. W. Park ◽  
S. Unjoh ◽  
T. Terayama ◽  
...  

This paper summarizes the results of a comparative study on seismic design of highway bridges jointly undertaken by the U.S. Federal Highway Administration and Japan's Public Works Research Institute. The seismic design specifications for highway bridges of the two countries are reviewed and compared with respect to their design philosophies and procedures. Some major design parameters including design seismic forces, response modification factors and minimum support lengths are addressed in detail. The differences between the two specifications are illustrated via a design example of a reinforced concrete column for simple, two-span bridges common in both countries. Three different scale models of the column are designed in accordance with the seismic design specifications of the United States and Japan, and tested on a shake table for their comparative seismic performance. The results of the shake table tests are discussed separately in a companion paper.


2012 ◽  
Vol 178-181 ◽  
pp. 2329-2332
Author(s):  
Chang Jiang Shao ◽  
Hua Ping Yang ◽  
Yong Jiu Qian

New requirement is claimed for the seismic design method of long-span railway bridges with the rapid development of high-speed railway construction in China during the last decade. However, the present design code of our country seems not keep pace with the engineering practice. The existing method, although embodying the philosophy of performance-based earthquake resistance design framework, in ‘the seismic design code of railway engineering’ is only applicable to those girder bridges with spans smaller than 150m. Therefore, the authors introduce the anti-seismic design measures of highway bridges from the Current China Specification to check the seismic safety of a long-span railway arch bridge as an applying example. Different seismic fortification criterions and property objects of the structural system and components are supplied in order to optimize the anti-seism performance of this bridge. The numerical results show that this kind of approach is helpful to improve the dynamical properties and seismic performances of large span railway bridges.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 225-232
Author(s):  
Joel Moscoso Tinco ◽  
Juan Alejandro Muñoz Pelaez

Seismic isolation is a seismic protection technique for buildings which has been recently introduced in Peru. More than twenty seismically isolated buildings exist in Peru, at present. Seismic isolators in many of these buildings have been designed using foreign codes developed for foreign seismic conditions in the absence of local design code. These conditions may not accurately represent Peruvian seismicity. The mandatory use of seismic isolators in new major hospital buildings has been established recently in the Peruvian seismic design code. Available studies in Peru indicate that most health centres may be temporarily affected after a rare seismic event. The seismic isolation Peruvian code is being developed taking into account the needs and implications of Peruvian seismicity. This paper presents the design procedure of the seismic isolation system of a representative four storey reinforced concrete hospital block. The requirements of the draft code for seismic isolation and the current seismic code have been used. The design process and verification show reasonable response of the structure in terms of drifts and acceleration even after including maximum and minimum modification factors of properties for the seismic isolation bearings.


1993 ◽  
Vol 9 (2) ◽  
pp. 233-250 ◽  
Author(s):  
Eduardo Miranda

After an overview of the development of U.S. seismic design specifications for highway bridges an evaluation of current Caltrans and AASHTO seismic criteria is presented. Linear and nonlinear response spectra of ground motions recorded on different soil conditions in the Loma Prieta earthquake and other recent earthquakes are compared with code recommendations. Special emphasis is placed on how present design procedures reduce elastic forces to take into account the energy absorption capacity of the structure, and on the estimation of maximum inelastic deformations. Results indicate that current design recommendations may underestimate strength and deformation demands, particularly for short-period bridges and for bridges on soft soils. Finally, recommendations are made on how seismic design specifications may be improved.


2000 ◽  
Vol 1696 (1) ◽  
pp. 209-215
Author(s):  
Ian M. Friedland ◽  
Ronald L. Mayes ◽  
W. Phillip Yen ◽  
John O’Fallon

Under several contracts sponsored by FHWA, the Multidisciplinary Center for Earthquake Engineering Research has been conducting a research program on highway structure seismic design and construction. Among its objectives, the program studies the seismic vulnerability of highway bridges, tunnels, and retaining structures and develops information that could be used, in the case of bridges, to revise current national design specifications. A specific requirement of the program is to have research results independently reviewed and assessed to determine the impact they may have on future seismic design specifications for highway structures. Some of the important results of the research that has been conducted under the program are summarized, and issues that resulted from this impact assessment about expected changes in future seismic design practice of highway bridges are discussed.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Yutao Pang ◽  
Aijun Ye

AbstractCoastal highway bridges are usually supported by pile foundations that are submerged in water and embedded into saturated soils. Such sites have been reported susceptible to scour hazard and probably liquefied under strong earthquakes. Existing studies on seismic response analyses of such bridges often ignore the influence of water-induced hydrodynamic effect. This study assesses quantitative impacts of the hydrodynamic effect on seismic responses of coastal highway bridges under scour and liquefaction potential in a probabilistic manner. A coupled soil-bridge finite element model that represents typical coastal highway bridges is excited by two sets of ground motion records that represent two seismic design levels (i.e., low versus high in terms of 10%-50 years versus 2%-50 years). Modeled by the added mass method, the hydrodynamic effect on responses of bridge key components including the bearing deformation, column curvature, and pile curvature is systematically quantified for scenarios with and without liquefaction across different scour depths. It is found that the influence of hydrodynamic effect becomes more noticeable with the increase of scour depths. Nevertheless, it has minor influence on the bearing deformation and column curvature (i.e., percentage changes of the responses are within 5%), regardless of the liquefiable or nonliquefiable scenario under the low or high seismic design level. As for the pile curvature, the hydrodynamic effect under the low seismic design level may remarkably increase the response by as large as 15%–20%, whereas under the high seismic design level, it has ignorable influence on the pile curvature.


Sign in / Sign up

Export Citation Format

Share Document