Ultrasonic Flexural Torsional Guided Wave Focusing in Pipe

Author(s):  
Zongqi Sun ◽  
Joseph L. Rose

Ultrasonic flexural torsional guided wave properties, including the excitation and propagation have been studied recently. Natural focusing is one of the major characteristics exhibited by partial loading excitation. With the aid of phased array transducer we propose a wave focusing method to enhance the signal to noise ratio and defect resolution in pipe inspection. With time delays and amplitudes applied to different elements constructive wave interference at specific point can be achieved in order to focus wave energy. Focusing effect is examined by angular profile, which is the circumferential displacement distribution.

Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Guided waves can be used in pipe inspection over long distances. Presented in this paper is a beam focusing technique to improve the S/N ratio of the reflection from a tiny defect. Focusing is accomplished by using non-axisymmetric waveforms and subsequent time delayed superposition at a specific point in a pipe. A semi-analytical finite element method is used to present wave structure in the pipe. Focusing potential is also studied with various modes and frequencies.


2005 ◽  
Vol 127 (3) ◽  
pp. 317-321 ◽  
Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Guided waves can be used in pipe inspection over long distances. Presented in this paper is a beam focusing technique to improve the S∕N ratio of the reflection from a tiny defect. Focusing is accomplished by using nonaxisymmetric waveforms and subsequent time delayed superposition at a specific point in a pipe. A semianalytical finite element method is used to present wave structure in the pipe. Focusing potential is also studied with various modes and frequencies.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


1985 ◽  
Vol 21 (5) ◽  
pp. 1657-1659 ◽  
Author(s):  
A. Murata ◽  
N. Koshizuka ◽  
T. Okuda ◽  
K. Ando ◽  
A. Ito ◽  
...  
Keyword(s):  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 486
Author(s):  
Carlos-Omar Rasgado-Moreno ◽  
Marek Rist ◽  
Raul Land ◽  
Madis Ratassepp

The sections of pipe bends are hot spots for wall thinning due to accelerated corrosion by fluid flow. Conventionally, the thickness of a bend wall is evaluated by local point-by-point ultrasonic measurement, which is slow and costly. Guided wave tomography is an attractive method that enables the monitoring of a whole bend area by processing the waves excited and received by transducer arrays. The main challenge associated with the tomography of the bend is the development of an appropriate forward model, which should simply and efficiently handle the wave propagation in a complex bend model. In this study, we developed a two-dimensional (2D) acoustic forward model to replace the complex three-dimensional (3D) bend domain with a rectangular domain that is made artificially anisotropic by using Thomsen parameters. Thomsen parameters allow the consideration of the directional dependence of the velocity of the wave in the model. Good agreement was found between predictions and experiments performed on a 220 mm diameter (d) pipe with 1.5d bend radius, including the wave-field focusing effect and the steering effect of scattered wave-fields from defects.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 146
Author(s):  
Yang Li ◽  
Zhenggan Zhou ◽  
Jun Wang

The ultrasonic array used for thin-walled structure non-destructive inspection usually has a high central frequency so that the thickness-to-acoustic wavelength ratio is greater than 10. When the ratio is much smaller than 10, the reliability of the conventional ultrasonic array method will dramatically decrease due to the influence of the acoustic near-field. This situation is unavoidable since the available central frequency of the array transducer cannot be an arbitrarily large value. To optimize the inspection performance in this case, the testing of an ultrasonic array and the evaluation of a structure whose thickness is smaller than five-times the longitudinal wavelength are analyzed in this paper. Linear ultrasonic array methods using different combinations of wave patterns, reflection times, and coupling conditions are uniformly expressed as full matrix algorithms. Simulated and experimental full matrices of 6 mm-thick aluminum plates using a 5-MHz array transducer are captured to analyze their imaging performances and sizing abilities with respect to various defects. Analyses show that the inspection results of the wedge coupling method have a much higher signal-to-noise ratio (SNR) than the results of conventional direct contact methods. Circular defects and rectangular defects can be distinguished by comparing the imaging results of different modes. For the simulated circular defect, the diameter can be measured according to the maximum image amplitude of the defect. To simulate a rectangular defect located in the lower half of the region, the nominal length can be measured using a linear function whose input is a −6 dB drop in length of the SS-S mode image. For a real sample, the material anisotropy and complex self-reflections will decrease the SNR by about 10 dB.


Author(s):  
Ayan Moitra ◽  
Christopher Chabalko ◽  
Balakumar Balachandran

Smoothed particle hydrodynamics (SPH) is used to simulate hydrodynamic waves and wave phenomena including focusing from wave interference. This Lagrangian based method can be used to naturally simulate hydrodynamic free surfaces, including the free surface of a breaking wave. A virtual wave tank is simulated where wave motions can be excited from either side. Wave focusing is observed at the tank center, where the waves interfere. As a measure of the interference, the wave heights that result from focusing are presented. Certain types of wave focusing are thought to lead to large ocean waves. The efficacy of SPH in modeling wave focusing is critical to further understanding and predicting extreme wave phenomena with SPH.


Author(s):  
Andrei Gribok ◽  
Vivek Agarwal

This paper describes the application of independent component analysis (ICA) to detect corrosion-induced defects in commercial nuclear power plants. This paper analyzes the applicability and benefits of ICA when applied to guided wave (GW) technology to detect corrosion in secondary circuits, as well as studying the potential for expanding the range of GW technology to include complex geometries and piping components. The ultrasonic GWs can inspect long stretches of straight piping; however, more complex geometries that include elbows, welds, and tees are causing spurious reflections and coherent noise, which significantly decreases the sensitivity of the GW systems. The potential of ICA to improve detection sensitivity is analyzed and practical recommendations are provided. It is demonstrated on GW data collected at one of the commercial nuclear power plants that ICA, under certain conditions, is capable of separating different coherent noise components and has potential for improving signal-to-noise ratio.


Sign in / Sign up

Export Citation Format

Share Document