Numerical Simualtion of Turbulence Mixing Characteristic in Various Secondary Flow Conditions at T-Junction Piping Systems

Author(s):  
Masa-aki Tanaka ◽  
Toshiharu Muramatsu

Temperature fluctuation caused by mixing the fluids with different temperature in a T-junction pipe gives eventually thermal fatigue to structure, and this phenomenon is significant as safety issue in liquid metal cooled fast reactor (LMFBR). In Japan Nuclear Cycle Development Institute (JNC), experimental and numerical investigations have been performed to clarify the mixing phenomena in the T-junction pipe and to establish an evaluation rule for design. If the T-junction pipe is set near an elbow pipe, turbulence mixing is surly affected by the secondary flow generated in the elbow pipe and it is necessary to study the influence of the secondary flow on the temperature fluctuation in the T-junction pipe. We carried out investigation into the secondary flow effect by numerical simulation using a quasi-direct numerical simulation code. Numerical simulation is conducted on the existing experiment, in which the test section simulated the T-junction pipe with the elbow pipe in LMFBR. Major parameter in the numerical simulation is the flow direction of the branch pipe to the flow direction of the elbow pipe. We discuss the influences of the secondary flow on turbulent mixing behavior, and also clarify the mixing mechanism in T-junction pipe.

2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


1997 ◽  
Vol 119 (3) ◽  
pp. 610-616 ◽  
Author(s):  
S. Mochizuki ◽  
A. Murata ◽  
M. Fukunaga

The objective of this study was to investigate, through experiments, the combined effects of a sharp 180 deg turn and rib patterns on the pressure drop performance and distributions of the local heat transfer coefficient in an entire two-pass rib-roughened channel with a 180 deg turn. The rib pitch-to-equivalent diameter ratio P/de was 1.0, the rib-height-to-equivalent diameter ratio e/de was 0.09, and the rib angle relative to the main flow direction was varied from 30 ∼ 90 deg with an interval of 15 deg. Experiments were conducted for Reynolds numbers in the range 4000 ∼ 30,000. It was disclosed that, due to the interactions between the bend-induced secondary flow and the rib-induced secondary flow, the combination of rib patterns in the channel before and after the turn causes considerable differences in the pressure drop and heat transfer performance of the entire channel.


2007 ◽  
Vol 25 (1) ◽  
pp. 117-144 ◽  
Author(s):  
S. Simon ◽  
A. Boesswetter ◽  
T. Bagdonat ◽  
U. Motschmann ◽  
J. Schuele

Abstract. The interaction between Titan's ionosphere and the Saturnian magnetospheric plasma flow has been studied by means of a three-dimensional (3-D) hybrid simulation code. In the hybrid model, the electrons form a mass-less, charge-neutralizing fluid, whereas a completely kinetic approach is retained to describe ion dynamics. The model includes up to three ionospheric and two magnetospheric ion species. The interaction gives rise to a pronounced magnetic draping pattern and an ionospheric tail that is highly asymmetric with respect to the direction of the convective electric field. Due to the dependence of the ion gyroradii on the ion mass, ions of different masses become spatially dispersed in the tail region. Therefore, Titan's ionospheric tail may be considered a mass-spectrometer, allowing to distinguish between ion species of different masses. The kinetic nature of this effect is emphasized by comparing the simulation with the results obtained from a simple analytical test-particle model of the pick-up process. Besides, the results clearly illustrate the necessity of taking into account the multi-species nature of the magnetospheric plasma flow in the vicinity of Titan. On the one hand, heavy magnetospheric particles, such as atomic Nitrogen or Oxygen, experience only a slight modification of their flow pattern. On the other hand, light ionospheric ions, e.g. atomic Hydrogen, are clearly deflected around the obstacle, yielding a widening of the magnetic draping pattern perpendicular to the flow direction. The simulation results clearly indicate that the nature of this interaction process, especially the formation of sharply pronounced plasma boundaries in the vicinity of Titan, is extremely sensitive to both the temperature of the magnetospheric ions and the orientation of Titan's dayside ionosphere with respect to the corotating magnetospheric plasma flow.


2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


Author(s):  
Akitomo Igarashi ◽  
Kazuyuki Toda ◽  
Makoto Yamamoto ◽  
Toshimichi Sakai

The performance of centrifugal fans is considerably influenced by the design of tongue at the re-circulation port. The flow in the volute of a centrifugal fan was studied both experimentally and numerically. In this experiment, flow angle, pressure and velocity profiles were measured at a large number of locations in the volute. The flow field in the volute passage was analyzed using Computational Fluid Dynamics. The flow was assumed to be three dimensional, turbulent and steady. The numerical simulation produced qualitatively good agreement with the experimental result. The results from experiment and numerical simulation indicated that the adoption of a re-circulating flow port improved fan performance for all flow conditions. In addition, the existence of strong secondary flow was apparent at the cross-section of the volute passage.


Author(s):  
A. R. Ansari ◽  
H. B. Khaleeq ◽  
A. Thakker

This paper presents a comparison of self-rectifying turbines for the Oscillating Water Column (OWC) based Wave Energy power extracting device using numerical simulation. The two most commonly used turbines for OWC based devices, the Impulse and the Wells turbines were evaluated under real sea simulated conditions. Assuming the quasi-steady condition, experimental data for both 0.6m turbines with 0.6 hub to tip ratio was used to predict their behavior under real sea conditions. The real sea water surface elevation time history data was used to simulate the flow conditions using standard numerical simulation techniques. A simple geometry of the OWC was considered for the simulation. The results show that the overall mean performance of an Impulse turbine is better than the Wells turbine under unsteady, irregular real sea conditions. The Impulse turbine was observed to be more stable over a wide range of flow conditions. This paper reports the comparison of performance characteristics of both these turbines under simulated real sea conditions.


Author(s):  
Atsushi Sakurai ◽  
Koji Matsubara ◽  
Shigenao Maruyama

Importance of turbulence and radiation interaction (TRI) has been investigated in a turbulent channel flow by using direct numerical simulation (DNS) to clarify detailed turbulent flow structure and heat transfer mechanisms. To investigate the effect of correlation functions between gas absorption and temperature fluctuation, the two cases of correlation are tested. Consequently, the TRI effect can be clearly observed when the correlation is positive. This fact provides the evidence that radiative intensity is enhanced by the turbulent fluctuation. The DNS results suggest the significance in the fundamental aspect of TRI. Furthermore, effects of frictional Reynolds number, Reτ, are investigated. Comparing with the case of Reτ = 150, the location of the enhancement peaks of Reτ = 300 shifts toward the walls. It is found that the relative importance of the TRI correspond to the structure of temperature fluctuation intensity originated from the differences of the Reτ.


Sign in / Sign up

Export Citation Format

Share Document