Corotational Analysis of Elastic-Plastic Hardening Materials Based on Different Kinematic Decompositions

Author(s):  
Kamyar Ghavam ◽  
Reza Naghdabadi

In this paper, two corotational modeling for elastic-plastic, mixed hardening materials at finite deformations are introduced. In these models, the additive decomposition of the strain rate tensor as well as the multiplicative decomposition of the deformation gradient tensor is used. For this purpose, corotational constitutive equations are derived for elastic-plastic hardening materials with the non-linear Armstrong-Frederick kinematic hardening and isotropic hardening models. As an application of the proposed constitutive modeling, the governing equations are solved numerically for the simple shear problem with different corotational rates and the stress components are plotted versus the shear displacement. The results for stress, using the additive and the multiplicative decompositions are compared with those obtained experimentally by Ishikawa [1]. This comparison shows a good agreement between the proposed theoretical models and the experimental data. As another example, the Prager kinematic hardening equation is used instead of the Armstrong-Frederick model. In this case the results for stress are compared with the theoretical results of Bruhns et al. [2].

Author(s):  
Kamyar Ghavam ◽  
Reza Naghdabadi

In this paper based on the multiplicative decomposition of the deformation gradient, the plastic spin tensor and the plastic spin corotational rate are introduced. Using this rate (and also log-rate), an elastic-plastic constitutive model for hardening materials are proposed. In this model, the Armstrong-Frederick kinematic hardening and the isotropic hardening equations are used. The proposed model is solved for the simple shear problem with the material properties of the stainless steel SUS 304. The results are compared with those obtained experimentally by Ishikawa [1]. This comparison shows a good agreement between the results of proposed theoretical model and the experimental data. As another example, the Prager kinematic hardening equation is used. In this case, the stress results are compared with those obtained by Bruhns et al. [2], in which they used the additive decomposition of the strain rate tensor.


Author(s):  
Kamyar Ghavam ◽  
Reza Naghdabadi

In this paper, a method for modeling of elastic-plastic hardening materials under large deformations is proposed. In this model the generalized strain rate tensor is used. Such a tensor is obtained on the basis of the method which was introduced by the authors. Based on the generalized strain rate tensor, a flow rule, a Prager-type kinematic hardening equation and a kinematic decomposition is proposed and the governing equations for such materials are obtained. As an application, the governing equations for the simple shear problem are solved and some results are compared with those in the literature.


2012 ◽  
Vol 249-250 ◽  
pp. 927-930
Author(s):  
Ze Yu Wu ◽  
Xin Li Bai ◽  
Bing Ma

In finite element calculation of plastic mechanics, isotropic hardening model, kinematic hardening model and mixed hardening model have their advantages and disadvantages as well as applicability area. In this paper, by use of the tensor analysis method and mixed hardening theory in plastic mechanics, the constitutive relation of 3-D mixed hardening problem is derived in detail based on the plane mixed hardening. Numerical results show that, the proposed 3-D mixed hardening constitutive relation agrees well with the test results in existing references, and can be used in the 3-D elastic-plastic finite element analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Biplab Chatterjee ◽  
Prasanta Sahoo

The present study considers the effect of strain hardening on elastic-plastic contact of a deformable sphere with a rigid flat under full stick contact condition using commercial finite element software ANSYS. Different values of tangent modulus are considered to study the effect of strain hardening. It is found that under a full stick contact condition, strain hardening greatly influences the contact parameters. Comparison has also been made between perfect slip and full stick contact conditions. It is observed that the contact conditions have negligible effect on contact parameters. Studies on isotropic and kinematic hardening models reveal that the material with isotropic hardening has the higher load carrying capacity than that of kinematic hardening particularly for higher strain hardening.


Volume 1 ◽  
2004 ◽  
Author(s):  
Kamyar Ghavam ◽  
Reza Naghdabadi

In this paper, based on the multiplicative decomposition of the deformation gradient tensor an elastic-plastic modeling of kinematic hardening materials is introduced. In this model, the elastic constitutive equation as well as the flow rule and hardening equation are expressed in terms of the corotational rate of the elastic and plastic logarithmic strains. As an application, the simple shear problem is solved and the stress components are plotted versus shear displacement for a kinematic hardening material.


Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


Author(s):  
M Wallin ◽  
M Ristinmaa ◽  
N S Ottosen

A kinematic hardening plasticity model valid for finite strains is presented. The model is based on the well-known multiplicative split of the deformation gradient into elastic and plastic parts. The basic ingredient in the formulation is the introduction of a locally defined configuration—a centre configuration—which is associated with a deformation gradient that is used to characterize the kinematic hardening behaviour. The non-dissipative quantities allowed in the model are found when the plastic and kinematic hardening evolution laws are split into two parts: a dissipative part, which is restricted by the dissipation inequality, and a non-dissipative part, which can be chosen without any thermodynamic considerations. To investigate the predictive capabilities of the proposed kinematic hardening formulation, necking of a bar is considered. Moreover, to show the influence of the non-dissipative quantities, the simple shear problem and torsion of a thin-walled cylinder are considered. The numerical examples reveal that the non-dissipative quantities can affect the response to a large extent and are consequently valuable and important ingredients in the formulation when representing real material behaviour.


2010 ◽  
Vol 638-642 ◽  
pp. 3710-3715
Author(s):  
T. Schenk ◽  
I.M. Richardson ◽  
G. Eßer ◽  
M. Kraska

The accurate prediction of welding distortion is an important requirement for the industry in order to allow the definition of robust process parameters without the need to perform expensive experiments. Many models have been developed in the past decades in order to improve prediction. Assumptions are made to make the models tractable; however, the consequences are rarely discussed. One example for such an assumption is the strain hardening model, which is often a choice between either kinematic or isotropic hardening. This paper presents the results of tensile tests for DP600 performed from room temperature up to one thousand degrees and for different strain-rates. In order to employ a mixed isotropic-kinematic hardening model, the fractions of each hardening contribution have been determined by means of bend testing. The welding distortion of a DP600 overlap joint has been simulated and it is shown that such a mixed-hardening model results in more accurate and reliable results.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1005 ◽  
Author(s):  
Naofal ◽  
Naeini ◽  
Mazdak

In this paper, the uniaxial loading–unloading–reloading (LUR) tensile test was conducted to determine the elastic modulus depending on the plastic pre-strain. To obtain the material parameters and parameter of Yoshida-Uemori’s kinematic hardening models, tension–compression experiments were carried out. The experimental results of the cyclic loading tests together with the numerically predicted response of the plastic behavior were utilized to determine the parameters using the Ls-opt optimization tool. The springback phenomenon is a critical issue in industrial sheet metal forming processes, which could affect the quality of the product. Therefore, it is necessary to represent a method to predict the springback. To achieve this aim, the calibrated plasticity models based on appropriate tests (cyclic loading) were implemented in commercial finite element (FE) code Ls-dyna to predict the springback in the roll forming process. Moreover, appropriate experimental tests were performed to validate the numerical results, which were obtained by the proposed model. The results showed that the hardening models and the variation of elastic modulus have significant impact on springback accuracy. The Yoshida-Uemori’s hardening represents more accurate prediction of the springback during the roll forming process when compared to isotropic hardening. Using the chord modulus to determine the reduction in elastic modulus gave more accurate results to predict springback when compared with the unloading and loading modulus to both hardening models.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Tao Zhang ◽  
Frederick W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plants can lead to cracking concerns caused by stress corrosion. Many factors can lead to the development of the weld residual stresses, and the distributions of the stress through the wall thickness can vary markedly depending on the weld processing parameters, nozzle and pipe geometries, among other factors. Hence, understanding the residual stress distribution is important in order to evaluate the reliability of pipe and nozzle welded joints. This paper represents an examination of the weld residual stress distributions which occur in different nozzles. The geometries considered here are large diameter thick wall pipe and nozzles. The detailed weld residual stress predictions for these nozzles are summarized. These results are categorized and organized in this paper and general trends for the causes of the distributions are established. The solutions are obtained using several different constitutive models including kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as weld repair, overlay, and postweld heat treatment are also considered. The residual stress field can therefore be used to perform a crack growth and instability analysis. Some general discussions and comments are given in the paper.


Sign in / Sign up

Export Citation Format

Share Document