Improved Design for Hypercompressor Packing Cups

Author(s):  
Nicola Campo ◽  
Francesco Chiesi

Second stage cylinders for polyethylene hyper compressors are among the most stressed pressure vessels in the industry. Due to the high operating pressure and pressure fluctuations between suction and discharge, these cylinders must be designed to withstand high fatigue loads. Packing cups are the most critical cylinder component and, in particular, the lube oil ducts are the bottleneck for reliability. This work deals with a structural optimization of packing cups focused on the most critical packing cup area: the lube oil hole. Various pre-compression techniques (i.e., shrink-fit and autofrettage) are used to improve the fatigue behavior. Longer life and reliability are investigated with advanced design techniques such as finite element modeling and design of experiments. New design cups with a 50% higher fatigue safety factor have been obtained.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Ossama R. Abdelsalam ◽  
Ramin Sedaghati

The autofrettage and shrink-fit processes are used to increase the load bearing capacity and fatigue life of the pressure vessels under thermomechanical loads. In this paper, a design optimization methodology has been proposed to identify optimal configurations of a two-layer cylinder subjected to different combinations of shrink-fit and autofrettage processes. The objective is to find the optimal thickness of each layer, autofrettage pressure and radial interference for each shrink-fit, and autofrettage combination in order to increase the fatigue life of the compound cylinder by maximizing the beneficial and minimizing the detrimental residual stresses induced by these processes. A finite element model has been developed in ansys environment to accurately evaluate the tangential stress profile through the thickness of the cylinder. The finite element model is then utilized in combination with design of experiment (DOE) and the response surface method (RSM) to develop a smooth response function which can be effectively used in the design optimization formulation. Finally, genetic algorithm (GA) combined with sequential quadratic programming (SQP) has been used to find global optimum configuration for each combination of autofrettage and shrink-fit processes. The residual stress distributions and the mechanical fatigue life based on the ASME code for high pressure vessels have been calculated for the optimal configurations and then compared. It is found that the combination of shrink-fitting of two base layers then performing double autofrettage (exterior autofrettage prior to interior autofrettage) on the whole assembly can provide higher fatigue life time for both inner and outer layers of the cylinder.


2005 ◽  
Vol 128 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Michael C. Gibson ◽  
Amer Hameed ◽  
Anthony P. Parker ◽  
John G. Hetherington

High-pressure vessels, such as gun barrels, are autofrettaged in order to increase their operating pressure and fatigue life. Autofrettage causes plastic expansion of the inner section of the cylinder, setting up residual compressive stresses at the bore after relaxation. Subsequent application of pressure has to overcome these compressive stresses before tensile stresses can be developed, thereby increasing its fatigue lifetime and safe working pressure. This paper presents the results from a series of finite element models that have been developed to predict the magnitude of these stresses for a range of end conditions: plane stress and several plane-strain states (open and closed ended, plus true plane strain). The material model is currently bilinear and allows consideration of strain hardening and the Bauschinger effect. Results are compared to an alternative numerical model and a recent analytical model (developed by Huang), and show close agreement. This demonstrates that general purpose finite element analysis software may be used to simulate high-pressure vessels, justifying further refining of the models.


2018 ◽  
Vol 46 (3) ◽  
pp. 130-152
Author(s):  
Dennis S. Kelliher

ABSTRACT When performing predictive durability analyses on tires using finite element methods, it is generally recognized that energy release rate (ERR) is the best measure by which to characterize the fatigue behavior of rubber. By addressing actual cracks in a simulation geometry, ERR provides a more appropriate durability criterion than the strain energy density (SED) of geometries without cracks. If determined as a function of crack length and loading history, and augmented with material crack growth properties, ERR allows for a quantitative prediction of fatigue life. Complications arise, however, from extra steps required to implement the calculation of ERR within the analysis process. This article presents an overview and some details of a method to perform such analyses. The method involves a preprocessing step that automates the creation of a ribbon crack within an axisymmetric-geometry finite element model at a predetermined location. After inflating and expanding to three dimensions to fully load the tire against a surface, full ribbon sections of the crack are then incrementally closed through multiple solution steps, finally achieving complete closure. A postprocessing step is developed to determine ERR as a function of crack length from this enforced crack closure technique. This includes an innovative approach to calculating ERR as the crack length approaches zero.


1997 ◽  
Author(s):  
Francois Hemez ◽  
Emmanuel Pagnacco ◽  
Francois Hemez ◽  
Emmanuel Pagnacco

Author(s):  
AIL Pais ◽  
C Silva ◽  
MC Marques ◽  
JL Alves ◽  
J Belinha

The aim of this work is the development of a novel framework for structural optimization using bio-inspired remodelling algorithm adapted to additive manufacturing. The fact that polylactic acid (PLA, E = 3145 MPa (Young’s modulus) according to the supplier for parts obtained by injection) shows a similar parameterized behavior with ductile metals, in the sense that both materials are characterized by a bi-linear elastic-plastic law, allows to simulate and prototype parts to be further constructed in ductile metals at a lower cost and then be produced with more expensive fabrication processes. Moreover, cellular materials allow for a significant weight reduction and therefore reduction of production costs. Structural optimization algorithms based on biological phenomena were used to determine the density distribution of the infill density of the specimens. Several simple structures were submitted to distinct complex load cases and analyzed using the mentioned optimization algorithms combined with the finite element method and a meshless method. The surface was divided according to similar density and then converted to stereolitography files and infilled with the gyroid structure at the desired density determined before, using open-source slicing software. Smoothing functions were used to smooth the density field obtained with the remodeling algorithms. The samples were printed with fused filament fabrication technology and submitted to mechanical flexural tests similar to the ones analyzed analytically, namely three- and four-point bending tests. Thus, the factors of analysis were the smoothing parameter and the remodeling method, and the responses evaluated were stiffness, specific stiffness, maximum force, and mass. The experimental results correlated (obtaining accuracy of 35% for the three-point bending load case and 5% for the four-point bending load case) to the numerical results in terms of flexural stiffness and it was found that the complexity of the load case is relevant for the efficiency of the functional gradient. The fused filament fabrication process is still not accurate enough to be able to experimentally compare the results based of finite element method and meshless method analyses.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

A three-dimensional finite element (FE) model with the consideration of the helix angle of the threads was developed to simulate the second stage self-loosening of a bolted joint. The second stage self-loosening refers to the graduate reduction in clamping force due to the back-off of the nut. The simulations were conducted for two plates jointed by a bolt and a nut and the joint was subjected to transverse or shear loading. An M12×1.75 bolt was used. The application of the preload was simulated by using an orthogonal temperature expansion method. FE simulations were conducted for several loading conditions with different preloads and relative displacements between the two clamped plates. It was found that due to the application of the cyclic transverse load, micro-slip occurred between the contacting surfaces of the engaged threads of the bolt and the nut. In addition, a cyclic bending moment was introduced on the bolted joint. The cyclic bending moment resulted in an oscillation of the contact pressure on the contacting surfaces of the engaged threads. The micro-slip between the engaged threads and the variation of the contact pressure were identified to be the major mechanisms responsible for the self-loosening of a bolted joint. Simplified finite element models were developed that confirmed the mechanisms discovered. The major self-loosening behavior of a bolted joint can be properly reproduced with the FE model developed. The results obtained agree quantitatively with the experimental observations.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Sign in / Sign up

Export Citation Format

Share Document