Effect of Coating Thickness on the Friction Coefficients and Torque-Tension Relationship in Threaded Fasteners

Author(s):  
Amro M. Zaki ◽  
Sayed A. Nassar

This paper experimentally investigates the effect of coating thickness on the thread, bearing friction coefficients and torque-tension relationship in threaded fasteners. The torque-tension relationship is highly sensitive frictional changes. Two different coating thicknesses are investigated using two bolt sizes; realtime test data is collected for two ranges of bolt tension. The experimental set up collects real-time data on the tightening torque, bolt tension, and the corresponding reaction torque. Test data is used for calculating the thread and bearing friction coefficients, as well as the overall torque-tension relationship for two different coating thicknesses. The study would provide an insight into the variation of the torque-tension relationship which is a key factor that significantly affect the reliability and safety of bolted assemblies in many mechanical and structural applications.

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Sayed A. Nassar ◽  
Amro M. Zaki

This paper experimentally investigates the effect of coating thickness on the thread, bearing friction coefficients, and torque-tension relationship in threaded fasteners, as well as an investigation into the effect of coating thickness on surface roughness properties. The torque-tension relationship is highly sensitive to frictional changes. Two different coating thicknesses are investigated using two bolt thread pitch; test data are collected for a preselected level of bolt tension. The experimental setup collects real-time data on the tightening torque, bolt tension, and the corresponding reaction torque. Test data are used for calculating the thread and bearing friction coefficients, as well as the overall torque-tension relationship for two different coating thicknesses. The study would provide an insight into the variation in the torque-tension relationship, which is a key factor that significantly affect the reliability and safety of bolted assemblies in many mechanical and structural applications.


2007 ◽  
Vol 129 (4) ◽  
pp. 484-494 ◽  
Author(s):  
Basil A. Housari ◽  
Sayed A. Nassar

This study provides a theoretical and experimental investigation of the effect of the thread and bearing friction coefficients on the self-loosening of threaded fasteners that are subjected to cyclic transverse loads. The friction coefficients are varied by using different types of coating and lubrication. A phosphate and oil coating and an olefin and molydisulfide solid film lubricant are used on the bolts tested. A mathematical model is developed to evaluate the self-loosening behavior in threaded fasteners when subjected to cyclic transverse loads. An experimental procedure and test setup are proposed in order to collect real-time data on the loosening rate (rate of clamp load loss per cycle) as well as the rotational angle of the bolt head during its gradual loosening. The experimental values of the friction coefficients are used in the mathematical model to monitor their effect on the theoretical results for the loosening rate. Experimentally, the friction coefficients are modified by changing the coating or the lubrication applied to the fasteners. The theoretical and experimental results are presented and discussed.


Author(s):  
Sayed A. Nassar ◽  
Basil A. Housari

This study provides an experimental and theoretical investigation of the effect of hole clearance and thread fit on the self-loosening of tightened threaded fasteners that are subjected to a cyclic transverse service load. An experimental procedure and test set up are developed in order to collect real-time data on the rate of clamp load loss per cycle as well as the loosening rotation of the bolt head. Three levels of hole clearance are investigated; namely, 3%, 6%, and 10% of the bolt nominal diameter. For the commonly used 2A thread fit for a selected bolt size, three classes of the nut thread fit are considered; namely, 1B, 2B, and 3B. A simplified mathematical model is used for the analytical investigation of the effect of the hole clearance and thread fit on threaded fasteners self-loosening. The experimental and theoretical results are presented and discussed.


Author(s):  
Sayed A. Nassar ◽  
Marco Gerini Romagnoli ◽  
Joon Ha Lee

This study provides experimentally validated formulation of underhead bearing friction torque component during tightening of threaded fasteners with non-flat contact with the joint. Motosh model is utilized for spherical and conical contact surfaces for various scenarios of contact pressure. For each pressure scenario, a single non-dimensional 3-D graph is generated for the corresponding values of an effective bearing friction radius. A rotating sliding speed-dependent friction coefficient model is also investigated for its impact of the results of bearing friction radius. Torque-Tension testing is used to measure the bearing friction torque and the corresponding bearing friction coefficients using Motosh model, in which the newly formulated bearing friction radius expressions are entered. Obtained bearing friction coefficient values are then compared with those published by the threaded fastener manufacturer.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Amro M. Zaki ◽  
Sayed A. Nassar ◽  
Xianjie Yang

A nonlinear mathematical model is developed for studying the self-loosening behavior of preloaded countersunk threaded fasteners that are subjected to cyclic transverse loads. Torque components acting on the bolt are divided into pitch and resistance torque components; the net torque determines whether or not the bolt will rotate loose under the external excitation. The accumulation of the differential amount of loosening rotation increments is converted into the gradual loss of the bolt tension/clamp load. Although the loosening model incorporates several system variables, this study is focused on investigating the effect of thread and bearing friction coefficients on the loosening of fasteners with coarse and fine threads. Model prediction of the self-loosening behavior is experimentally validated.


Author(s):  
Basil A. Housari ◽  
Sayed A. Nassar

This study provides an experimental and theoretical investigation of the effect of the bearing friction coefficient and the thread friction on the self-loosening of threaded fasteners that are subjected to cyclic transverse service loads. Coating and lubrication affect the thread and the underhead friction of the fastener, which affects the loosening rate when it is subjected to transverse loads. A mathematical model was developed to evaluate the self-loosening behavior in threaded fasteners when subjected to cyclic transverse loads. An experimental procedure and test set up are designed in order to collect real-time data on the rate of preload loss per cycle as well as the rotational angle of the bolt head during its gradual loosening. The values of the coefficients of friction under the bolt head and between the threads were changed in the mathematical model to monitor their effect on the loosening rate. Experimentally, the friction coefficients are modified by changing the coating or the lubrication applied to the fasteners. One coating and one solid film lubricant are used, namely, phosphate and oil coating and Olefin and Molydisulfide lubricated bolts. The theoretical and experimental results are presented and discussed.


Author(s):  
Sayed A. Nassar ◽  
Saravanan Ganeshmurthy ◽  
Xianjie Yang

This paper investigates the kinetic and static frictional torque components in threaded fasteners during the initial fastener tightening, subsequent torque audit, as well as during the loosening of previously tightened bolts. In less critical applications, the peak kinetic torque value is often used for predicting the bolt preload. The peak value of the tightening torque and its frictional components are mainly determined by the kinetic friction coefficients between the engaged threads and between the rotating nut (or head) and the joint surface. During subsequent quality inspection of the joint after its initial assembly, an audit residual torque value (in the tightening direction) is often used for predicting the residual fastener tension and joint clamp load, as well as for predicting the stability of the clamp load. In contrast with the peak kinetic torque, the audit torque and its thread and under head/nut frictional components are mainly determined by the static friction coefficients. In some cases, the careful application of a breakaway torque in the loosening direction (loosening torque) may be used as a measure for the residual clamp load; similar to the quality audit torque, the loosening torque is determined by the static friction coefficients of the bolted system. An experimental procedure and test set up are proposed to investigate the effect underhead contact radius, thread pitch, surface coating, and fastener head versus nut side tightening on the static and kinetic frictional torque components.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 591
Author(s):  
Irene Castañeda ◽  
Elsa Bonnaud ◽  
Franck Courchamp ◽  
Gloria Luque

As a critical stage in the life cycle of ant colonies, nest establishment depends on external and internal factors. This study investigates the effect of the number of queens on queen and worker behavior during nest establishment in invasive Argentine ants (Linepitema humile) and native Mediterranean Tapinoma nigerrimum. We set up experimental colonies with the same number of workers but with one or six queens. At different time points, we recorded the positions of queens and workers inside and outside the nest. Our results highlight the influence of the number of queens on the position of queens and workers with between-species differences. Queens of both species entered the nests more quickly when there were six queens. During nest establishment, more workers were inside nests with six queens for both species, with this effect being greater for T. nigerrimum. Once nests were established, fewer workers of both species were engaged in nest maintenance and feeding in nests with six queens; T. nigerrimum had fewer workers engaged in patrolling. These results suggest that the number of queens is a key factor driving queen and worker behavior during and after nest establishment with different species responses.


2006 ◽  
Vol 129 (6) ◽  
pp. 586-594 ◽  
Author(s):  
Sayed A. Nassar ◽  
Basil A. Housari

This study provides an experimental and theoretical investigation of the effect of hole clearance and thread fit on the self-loosening of tightened threaded fasteners that are subjected to a cyclic transverse service load. An experimental procedure and test setup are developed in order to collect real-time data on the rate of clamp load loss per cycle as well as the loosening rotation of the bolt head. Three levels of hole clearance are investigated; namely, 3%, 6%, and 10% of the bolt nominal diameter. For the commonly used 2A thread fit for a selected bolt size, three classes of the nut thread fit are considered; namely, 1B, 2B, and 3B. A simplified mathematical model is used for the analytical investigation of the effect of the hole clearance and thread fit on threaded fasteners self-loosening. The experimental and theoretical results are presented and discussed.


2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


Sign in / Sign up

Export Citation Format

Share Document