Optimising Residual Stress Measurements and Predictions in a Welded Benchmark Specimen: A Review of Phase 2 of the NeT Task Group 1 Single Bead on Plate Round Robin

Author(s):  
Michael C. Smith ◽  
Ann C. Smith ◽  
Robert C. Wimpory ◽  
Carsten Ohms ◽  
Brahim Nadri ◽  
...  

A single weld bead deposited on a flat plate is a deceptively simple problem that is in practice a challenge for both measurement and prediction of weld residual stresses. Task Group 1 of the NeT collaborative network has examined this problem in a two-phase programme extending from 2002 to 2008. Ten independent sets of residual stress measurements have been reported using diverse techniques, and over forty finite element simulations have been performed. This paper reviews Phase 2 of the Task Group 1 round robin. Here, the finite element simulations all made use of optimised thermal solutions, in which the global welding parameters, including efficiency, were fixed, and only the detailed heat source geometry was varied. These resulted in accurate far field welding temperature distributions, with significant variability only close to the weld bead itself. The subsequent mechanical analyses made use of kinematic, isotropic, and mixed isotropic-kinematic material constitutive models, and made a variety of assumptions about the introduction of weld filler material to the structure and the handling of high temperature inelastic strains. The large database of measurements allowed the derivation of statistical best estimates using a Bayesian “duff data” approach, and these best estimates were compared with the predictions to establish the most accurate material constitutive models. The most accurate predictions of residual stress were made using non-linear kinematic or mixed isotropic-kinematic constitutive models. The methods used to handle high-temperature inelastic strains influenced the predicted stresses only in regions where very high temperatures were predicted during welding. The results emphasise the importance and value of both well-characterised benchmark problems and international collaboration in the development of technologies to both measure and predict weld residual stresses.

Author(s):  
Michael C. Smith ◽  
Brahim Nadri ◽  
Ann C. Smith ◽  
David G. Carr ◽  
Philip J. Bendeich ◽  
...  

A single weld bead deposited on a flat plate is a deceptively simple problem that is in practice a challenge for both measurement and prediction of weld residual stresses. Task Group 1 of the NeT collaborative network has examined this problem in an extensive programme of measurement and simulation extending from 2002 to 2008. As a result, the NeT bead on plate forms an ideal benchmark problem for the development of weld residual stress simulation techniques. One of the conclusions of NeT Task Group 1 is that the most accurate predictions of weld residual stresses in austenitic steels are achieved using mixed isotropic-kinematic material constitutive models. However, the use of these models can require both extensive materials data, and compromises in fitting either the monotonic or cyclic responses. This paper reports a detailed matrix of sensitivity studies aimed at optimising the behaviour of mixed hardening models in welding simulation, using the Lemaitre-Chaboche formulation in the ABAQUS finite element code. Predicted stresses and strains in the NeT bead on plate specimen are compared with the extensive database of residual stress measurements. Further studies examine sensitivity to the handling of high temperature inelastic strains, using a novel two-stage annealing functionality implemented within ABAQUS. The results show that, overall, the most accurate predictions are made if the Lemaitre-Chaboche parameters are optimised to fit the monotonic response over the first 2% of plastic strain. However, further improvements in prediction could be achieved if the constitutive model were capable of independently fitting both the monotonic and saturated cyclic response of the material.


Author(s):  
Dongxiao Qiao ◽  
Wei Zhang ◽  
Zhili Feng

Weld residual stress is a major driving force for initiation and growth of primary water stress corrosion cracking (PWSCC), which is a critical challenge for weld integrity of reactor pressure vessel nozzles in nuclear industry. Predicting weld residual stresses for the purpose of understanding and mitigating PWSCC requires the knowledge of material constitutive rule especially strain hardening behavior over a wide range of temperatures. Though it is adequate for describing deformation at low temperature, the conventional, rate-independent, elastic-plastic constitutive rule falls short in predicting the strong microstructure-mechanical interaction such as the softening due to recovery (dislocation annihilation and realignment) and recrystallization at elevated temperature in welding. To quantify the extent of softening under temperature and strain conditions relevant to welding, a framework has been developed by combining advanced experimental techniques and finite element modeling. First, physical simulation in a Gleeble testing machine is used to simulate the temperature transients typical of dissimilar metal weld by subjecting round tensile bar shaped specimens to rapid heating and cooling. Second, the digital image correlation (DIC) technique is used to map the non-uniform strain field and extract local strain history needed for accurately determining the true stress vs. true strain curve of softened material. Third, the thermally-mechanically processed specimens are characterized metallographically to correlate the microstructure changes to the measured stress-strain behavior. Finally, a thermal-stress finite element model of three-bar frame is used to study the effect of softening on the predicted weld residual stresses. As a first step toward developing the much-needed, comprehensive material constitutive relation database for dissimilar metal weld, the framework has been applied to study AISI 304L austenitic stainless steel. The extent of softening due to different duration of high-temperature exposure is studied and its influence on final residual stresses is discussed.


Author(s):  
Karim Serasli ◽  
Harry Coules ◽  
David Smith

Most residual stress measurement methods are limited in terms of their stress and spatial resolution, number of stress tensor components measured and measurement uncertainty. In contrast, finite element simulations of welding processes provide full field distributions of residual stresses, with results dependent on the quality of the input conditions. Measurements and predictions are often not the same, and the true residual stress state is difficult to determine. In this paper both measurements and predictions of residual stresses, created in clad nuclear reactor pressure vessel steels, are made. The measurements are then used as input to a residual stress mapping technique provided within a finite element analysis. The technique is applied iteratively to converge to a balanced solution which is not necessarily unique. However, the technique aids the identification of locations for additional measurements. This is illustrated in the paper. The outcomes from the additional measurements permit more realistic and reliable estimates of the true residual state to be made. The outcomes are compared with the finite element simulations of the welding process and used to determine whether there is a need for additional input to the simulations.


Author(s):  
Philip J. Bendeich ◽  
Mike C. Smith ◽  
David G. Carr ◽  
Lyndon Edwards

A single weld bead deposited on a flat plate is a deceptively simple problem that is, in practice, a significant challenge for both measurement and prediction of weld residual stresses. Task Group 1 of the NeT collaborative network has examined this problem in an extensive programme of measurement and simulation extending from 2002 to 2008. Thus, the NeT bead on plate forms an ideal benchmark problem for the development of weld residual stress simulation techniques. It is often difficult to separate the influence of different analysis variables in a large collaborative study such as NeT Task Group 1. This paper examines sensitivity to mesh design, element type, and heat source characteristics in a closely controlled study using several different mesh designs, element types (both tetrahedral and hexahedral), and heat sources, but the same material constitutive model and finite element analysis code. It complements a companion paper that varies material constitutive models. A dedicated heat source modelling tool with a semi-automatic interface to the ABAQUS finite element code has been used to vary the heat source characteristics, thus facilitating rapid and controlled sensitivity studies without the need for bespoke heat source coding within ABAQUS.


Author(s):  
Ted L. Anderson ◽  
Gregory W. Brown

Many older pipelines contain significant residual stress due to the forming process. Cold expansion or a normalizing heat treatment can virtually eliminate residual forming stresses, but these practices were less common in the past. In the absence of cold expansion or normalization, residual forming stresses can be reduced by hydrostatic testing or operating pressures, but not eliminated entirely. Residual stresses can contribute to fracture in pipelines, particularly when the material toughness is low. This article presents a series of analyses that seek to quantify the magnitude of residual forming stresses as well as their impact on pipeline integrity. The pipe forming process was simulated with elastic-plastic finite element analyses, which considered the effect of subsequent loading on relaxation of residual stresses. A second set of finite element simulations were used to quantify the effect of residual stresses on fracture behavior.


2008 ◽  
Vol 59 ◽  
pp. 299-303
Author(s):  
K. Mergia ◽  
Marco Grattarola ◽  
S. Messoloras ◽  
Carlo Gualco ◽  
Michael Hofmann

In plasma facing components (PFC) for nuclear fusion reactors tungsten or carbon based tiles need to be cooled through a heat sink. The joint between the PFC and the heat sink can be realized using a brazing process through the employment of compliant layer of either a low yield material, like copper, or a high yield material, like molybdenum. Experimental verification of the induced stresses during the brazing process is of vital importance. Strains and residual stresses have been measured in Mo/CuCrZr brazed tiles using neutron diffraction. The strains and stresses were measured in Mo tile along the weld direction and at different distances from it. The experimental results are compared with Finite Element Simulations.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Author(s):  
Partha Rangaswamy ◽  
N. Jayaraman

Abstract In metal matrix composites residual stresses developing during the cool-down process after consolidation due to mismatch in thermal expansion coefficients between the ceramic fibers and metal matrix have been predicted using finite element analysis. Conventionally, unit cell models consisting of a quarter fiber surrounded by the matrix material have been developed for analyzing this problem. Such models have successfully predicted the stresses at the fiber-matrix interface. However, experimental work to measure residual stresses have always been on surfaces far away from the interface region. In this paper, models based on the conventional unit cell (one quarter fiber), one fiber, two fibers have been analyzed. In addition, using the element birth/death options available in the FEM code, the surface layer removal process that is conventionally used in the residual stress measuring technique has been simulated in the model. Such layer removal technique allows us to determine the average surface residual stress after each layer is removed and a direct comparison with experimental results are therefore possible. The predictions are compared with experimental results of an eight-ply unidirectional composite with Ti-24Al-11 Nb as matrix material reinforced with SCS-6 fibers.


Sign in / Sign up

Export Citation Format

Share Document