Research and Application on Mechanical Behavior of Austenitic Stainless Steels for Cold Stretched Pressure Vessel

Author(s):  
Yu Han ◽  
Xuedong Chen ◽  
Quankun Liu

Austenitic stainless steels (ASS) have good ductility and toughness but low yield strength. In order to save material and realize lightweight of pressure vessels, the cold stretching technology can be used to enhance ASS’s yield strength. Based on the control of different strain, the material parameters of strength, ductility and volume fraction of strain-induced martensite (SIM) were obtained. The results show that cold stretching can significantly improve ASS’s yield strength and have minor effect on material’s plasticity and content of SIM. The ASS still maintain enough plastic margin after cold stretching and thus can substantially reduce the wall thickness of vessel. In the quasi-static conditions, the mechanical parameters are not sensitive to strain rate. However, too small strain rate will lead to occurrence of serrated yielding, which is called Portevin-Le Chatelier (PLC) effect. The conclusions for the cold stretching in pressure vessel provide theoretic basis reference for engineering applications.

Author(s):  
Gang Chen ◽  
Yang-Chun Deng ◽  
Xiao-Feng Yang

The yield strength of austenitic stainless steels can be increased significantly through the strain-strengthening process. In this study, we presented the basic principle of strain-strengthening and introduced two strain-strengthening processes of austenitic stainless steels, Avesta process at normal temperature and Ardeform process at cryogenic temperature, in which Avesta process was much easier to operate. The design safety factor of pressure vessels with different levels of strain strengthening by Avesta process was also investigated. It was recommended that the strain during Avesta strain-strengthening process should be limited within 5%.


1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


Author(s):  
Omesh K. Chopra

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components and specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, and flow rate, on the fatigue lives of these steels are summarized. Statistical models are presented for estimating the fatigue ε–N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue design curves.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1845
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

Low-temperature nitriding allows to improve surface hardening of austenitic stainless steels, maintaining or even increasing their corrosion resistance. The treatment conditions to be used in order to avoid the precipitation of large amounts of nitrides are strictly related to alloy composition. When nickel is substituted by manganese as an austenite forming element, the production of nitride-free modified surface layers becomes a challenge, since manganese is a nitride forming element while nickel is not. In this study, the effects of nitriding conditions on the characteristics of the modified surface layers obtained on an austenitic stainless steel having a high manganese content and a negligible nickel one, a so-called nickel-free austenitic stainless steel, were investigated. Microstructure, phase composition, surface microhardness, and corrosion behavior in 5% NaCl were evaluated. The obtained results suggest that the precipitation of a large volume fraction of nitrides can be avoided using treatment temperatures lower than those usually employed for nickel-containing austenitic stainless steels. Nitriding at 360 and 380 °C for duration up to 5 h allows to produce modified surface layers, consisting mainly of the so-called expanded austenite or gN, which increase surface hardness in comparison with the untreated steel. Using selected conditions, corrosion resistance can also be significantly improved.


Author(s):  
Martin Bjurstro¨m ◽  
Carl-Gustaf Hjorth

The fabrication of near net shape powder metal (PM) components by hot isostatic pressing (HIP) has been an important manufacturing technology for steel and stainless steel alloys since about 1985. The manufacturing process involves inert gas atomization of powder, 3D CAD capsule design, sheet metal capsule fabrication and densification by HIP in very large pressure vessels. Since 1985, several thousand tonnes of parts have been produced. The major applications are found in the oil and gas industry especially in offshore applications, the industrial power generation industry, and traditional engineering industries. Typically, the components replace castings, forgings and fabricated parts and are produced in high alloy grades such as martensitic steels, austenitic stainless steels, duplex (ferritic/austenitic) stainless steels and nickel based superalloys. The application of PM/HIP near net shapes to pump barrels for medium to high pressure use has a number of advantages compared to the traditional forging and welding approach. First, the need for machining of the components is reduced to a minimum and welding during final assembly is reduced substantially. Mechanical properties of the PM/HIP parts are isotropic and equal to the best forged properties in the flow direction. This derives from the fine microstructure using powder powder and the uniform structure from the HIP process. Furthermore, when using the PM HIP process the parts are produced near net shape with supports, nozzles and flanges integrated. This significantly reduces manufacturing lead-time and gives greater design flexibility which improves cost for the final component. The PM HIP near net shape route has received approval from ASTM, NACE and API for specific steel, stainless steel and nickel base alloys. This paper reviews the manufacturing sequence for PM near net shapes and discusses the details of several successful applications. The application of the PM/HIP process to high pressure pump barrels is highlighted.


Author(s):  
Seiji Fukuyama ◽  
Masaaki Imade ◽  
Kiyoshi Yokogawa

A new type of apparatus for material testing in high-pressure gas of up to 100 MPa was developed. The apparatus consists of a pressure vessel and a high-pressure control system that applies the controlled pressure to the pressure vessel. A piston is installed inside a cylinder in the pressure vessel, and a specimen is connected to the lower part of the piston. The load is caused by the pressure difference between the upper room and the lower room separated by the piston, which can be controlled to a loading mode by the pressure valves of the high-pressure system supplying gas to the vessel. Hydrogen gas embrittlement (HGE) and internal reversible hydrogen embrittlement (IRHE) of austenitic stainless steels and iron- and nickel-based superalloys used for high-pressure hydrogen storage of fuel cell vehicle were evaluated by conducting tensile tests in 70 MPa hydrogen. Although the HGE of these metals depended on modified Ni equivalent, the IRHE did not. The HGE of austenitic stainless steels was larger than their IRHE; however, the HGE of superalloys was not always larger than their IRHE. The effects of the chemical composition and metallic structure of these materials on the HGE and IRHE were discussed. The HGE of austenitic stainless steels was examined in 105 MPa hydrogen. The following were identified; SUS304: HGE in stage II, solution-annealed SUS316: HGE in stage III, sensitized SUS316: HGE in stage II, SUS316L: HGE in FS, SUS316LN: HGE in stage III and SUS310S: no HGE.


Sign in / Sign up

Export Citation Format

Share Document