Simplified Equations for Predicting Secondary Stress Around Pipe’s Circumference

Author(s):  
Junkan Wang ◽  
Rajil Saraswat ◽  
Ali Mirzaee-Sisan

This paper examines the magnitude and location of the maximum residual stress induced in pipes after the process of bending, reverse-bending and straightening. Dimensional analysis is used to establish generalized equations relating the maximum residual stress magnitude and location to the pipe geometry, maximum bending curvature and pipe material’s yield stress. 64 design cases based on an analytical solution assuming elastic-perfectly-plastic material behavior have been conducted. Regression analysis has revealed that the magnitude of the maximum residual stress can be conservatively approximated by a simplified quadratic equation involving the maximum axial bending strain, whereas the location of the maximum residual stress can be approximated by a linear function based on the same. Both equations are expected to be valid and conservative for X65 and X70 grade steel pipes under global maximum axial strain between 1% and 3%. Non-linear finite element analysis based on a realistic design example with isotropic hardening material is used to validate the prediction results based on the simplified equations.

Author(s):  
Zijian Zhao ◽  
Abdel-Hakim Bouzid

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.


Author(s):  
Ashutosh Sutra Dhar ◽  
Abu Hena Muntakim

Nonlinear finite element analysis of axi-symmetrically dented/wrinkled pipe has been presented in this paper. The pipe including surrounding soil was modelled using three different approaches to indicate the effects of modelling approaches on the simulation of pipe behavior. In the first approach, pipe was modelled with the geometry of the dented/wrinkled pipe without consideration of any residual stress and stress history. In the second approach, residual stress was applied at the nodal points of the pipe geometry modelled as in the first approach. In the third approach, a dent/wrinkle was created on the pipe wall through applying nodal displacements to include residual stress as well as the stress history effects. The analysis revealed that the first approach provides an un-conservative estimation of the pipe capacity. The second approach provides a reasonable estimation of the pipe capacity for elastic perfectly plastic material. However, the second approach provides a conservative estimation for strain hardening material, since pipe stress history is not considered. For strain hardening materials, both residual stress and the stress history should be considered for the simulation of the pipe behavior. The surrounding soil appears not to contribute to the capacity of the pipes under the loading conditions investigated.


Author(s):  
Ines Gilch ◽  
Tobias Neuwirth ◽  
Benedikt Schauerte ◽  
Nora Leuning ◽  
Simon Sebold ◽  
...  

AbstractTargeted magnetic flux guidance in the rotor cross section of rotational electrical machines is crucial for the machine’s efficiency. Cutouts in the electrical steel sheets are integrated in the rotor sheets for magnetic flux guidance. These cutouts create thin structures in the rotor sheets which limit the maximum achievable rotational speed under centrifugal forces and the maximum energy density of the rotating electrical machine. In this paper, embossing-induced residual stress, employing the magneto-mechanical Villari effect, is studied as an innovative and alternative flux barrier design with negligible mechanical material deterioration. The overall objective is to replace cutouts by embossings, increasing the mechanical strength of the rotor. The identification of suitable embossing geometries, distributions and methodologies for the local introduction of residual stress is a major challenge. This paper examines finely distributed pyramidal embossings and their effect on the magnetic material behavior. The study is based on simulation and measurements of specimen with a single line of twenty embossing points performed with different punch forces. The magnetic material behavior is analyzed using neutron grating interferometry and a single sheet tester. Numerical examinations using finite element analysis and microhardness measurements provide a more detailed understanding of the interaction of residual stress distribution and magnetic material properties. The results reveal that residual stress induced by embossing affects magnetic material properties. Process parameters can be applied to adjust the magnetic material deterioration and the effect of magnetic flux guidance.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


Author(s):  
Jean Paul Kabche ◽  
Mauri´cio Rangel Pacheco ◽  
Ivan Thesi ◽  
Luiz Carlos Largura

Bolted connections are largely employed in various types of engineering structures to transfer loads from one member to another. In particular, the off-shore industry has made extensive use of these connections, predominantly at the sub-sea level. In spite of their advantages, bolted joints are critical regions and may become sources of structural weakness due to large stress concentrations. Under severe operating conditions, micro-cracks can develop in the bolt, creating regions of elevated stress which may significantly reduce the integrity of the connection and ultimately lead to failure. This paper presents the three-dimensional finite element analysis of a steel locked bolt assembly aimed to assess the effect of micro-cracks on the structural integrity of the assembly using the commercial finite element package ANSYS. Non-linear contact between the bolt and nut threads is considered, where frictional sliding between components is allowed. A bi-linear isotropic hardening model is used to account for non-linear material behavior. The assembly is loaded by applying a pre-load of fifty percent of the yield stress of the material, according to the API-6A Norm. Two geometric models are investigated: a healthy locked bolt assembly with no initial cracks; and a damaged model, where a circular crack is introduced at the root of the bolt threads. The effect of the crack size is studied by modeling the crack with three different radius sizes. The J-Integral fracture mechanics methodology was used to study the stress concentrations in the damaged model.


2011 ◽  
Vol 415-417 ◽  
pp. 2130-2133 ◽  
Author(s):  
Xiao Jiu Feng ◽  
Li Fu Liang ◽  
Si Yuan Wang

This paper adopts Macroscopic Phenomenological Method to establish constitutive relation. In order to maintain better approximation, it adopts testing data of typical stress path, testing data of uniaxial tension and torsion test. Applying multidimensional incremental theory under general loading law, on the base of certain loading function of stress space and loading function of strain space, this essay drives heat-elasto-plastic constitutive relation of heated isotropic hardening material under the condition of elasto-plastic decoupling. Meanwhile, this constitutive relation also suits for kinematic hardening material and elastic-perfectly plastic material. This paper builds a means of driving constitutive relation of multidimensional incremental theory under general loading law in strain space.


2007 ◽  
Vol 561-565 ◽  
pp. 1783-1786 ◽  
Author(s):  
Xiao Jun Shao ◽  
Jun Liu ◽  
Yong Shou Liu ◽  
Zhu Feng Yue

A 2D cylindrical plate model has been established to study the distribution of residual stress of cold expansion hole under different interference values. In addition, the effects of material models on residual stress fields are considered also. Experiments are carried out to measure the residual stress of cold expansion hole and verify simulation results. FEM results show, with interference values increasing, the higher residual radial and circumferential stresses are obtained. At same interference value, the residual stress of Hardening Material( HM ) model is much larger than that of Elastic Perfectly Plastic Material( EPPM ) model.


Author(s):  
N. A. Leggatt ◽  
R. J. Dennis ◽  
P. R. Hurrell

Full two and three-dimensional single or multi-pass weld simulations are now feasible and practical given the development of improved analysis tools (e.g. ABAQUS), and significantly greater computer power. This paper describes a finite element analysis undertaken to predict the as-welded residual stress field following the welding of a tube attachment weld inside a thick pressure vessel (PV) forging. The coupled thermal-mechanical analysis was performed using the finite element (FE) code ABAQUS, A heat source modelling tool was employed to calculate welding fluxes, which were read into ABAQUS via a user subroutine. The ‘block’ dumped approach was utilised in the 2D thermal analysis such that complete weld rings are deposited instantaneously. Heat inputs were based on the actual weld parameters and bead sizes. The predicted fusion depths matched well with those found in sectioned weld test pieces. 2D FE sensitivity studies were performed examining the effect of variations in a number of parameters (bead sequence, hardening law, inter-pass temperature and annealing temperature). The hardening law was changed from isotropic to kinematic to investigate the effect of material behaviour. Large weld residual tensile stresses were calculated with significant compressive stresses in the adjacent vessel wall. Stress results were generally insensitive in the tube and forging, indicating that the vessel constraint dominates over local welding conditions. Weld hoop stresses were overestimated partly due to the ‘tourniquet’ effect of depositing rings of weld metal and the isotropic hardening law assumed.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. L. Mahmood ◽  
R. Adibi-Asl ◽  
C. G. Daley

Simplified limit analysis techniques have already been employed for limit load estimation on the basis of linear elastic finite element analysis (FEA) assuming elastic-perfectly-plastic material model. Due to strain hardening, a component or a structure can store supplementary strain energy and hence carries additional load. In this paper, an iterative elastic modulus adjustment scheme is developed in context of strain hardening material model utilizing the “strain energy density” theory. The proposed algorithm is then programmed into repeated elastic FEA and results from the numerical examples are compared with inelastic FEA results.


2011 ◽  
Vol 480-481 ◽  
pp. 459-465
Author(s):  
Kuang Hung Tseng ◽  
Kuan Lung Chen

This work conducted a non-linear finite element model associated with arc efficiency to simulate the temperature distribution and residual stress. A three-dimensional finite element analysis of temperature and stress in butt-joint TIG welds was performed using commercial software ANSYS. This model includes adjusting Gaussian distribution heat flux, alternating temperature dependent material properties, and managing thermal elasto-plastic material behavior. Computational results for both the temperature distribution and the residual stress are compared with available experimental data to confirm the accuracy of this technique. The simulated results of temperature distribution and residual stress are in good agreement with corresponding experimental data. The greatest value of this work does not lie in its ability to predict the magnitude and distribution of weld temperature and residual stress. Rather, this work proposed that prediction errors in a finite element model can be eliminated by modifying the arc power distribution function.


Sign in / Sign up

Export Citation Format

Share Document