scholarly journals An Experimental Study of Ductile Failure Under Multi-Axial Loading

Author(s):  
Wei-Yang Lu ◽  
Helena Jin

Recent experimental investigations show that most models are not able to capture the ductile behavior of metal alloys in the entire triaxiality range, especially at low triaxiality. Modelers are moving beyond stress triaxiality as the dominant indicator of material failure and developing constitutive models that incorporate shear into the evolution of the failure model. Available data that cover low triaxiality range are rare and a series of critical experiments is needed. Here, experiments of smooth thin as well as notched tubular specimens of Al6061-T651 under combined tension-torsion loading were conducted. This provides a very basic set of data for phenomenological models. A full-field deformation technique, digital image correlation (DIC), was applied to these tests to allow measurement of the field deformation, including the notched area. The microstructural features of the tested specimens were characterized to better understand the different failure mechanisms which led to ductility variation in the aluminum alloy.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xin Liu ◽  
Jun Yang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Hongliang Tang

The experimental system of 3D digital image correlation (3D-DIC) is set up to eliminate a certain extent of out-of-plane motion for accurate measuring the full-field strain field during crack propagation, and the effect of blast loading rates of fracture behavior of granite rectangle plate with a crack (GRPC) is investigated. The experimental results indicated that the maximum values of the strain concentration zone do not fully represent the crack tip during the whole process of crack propagation. The axial strain threshold value tip (ASTVT) plotting with lines and coordinate contours corresponding with the actual crack at the shooting area can be used to describe the position of the crack. The axial strain 1.3% is more practical to obtain crack velocity and average crack velocity, and the average crack velocity decreases as the blast loading rates increase. Through observing the relationship between crack width and time, it can be found that there are three stages, and the crack width increases as the blast loading rates increase.


2015 ◽  
Vol 658 ◽  
pp. 53-58
Author(s):  
Kritchanan Charoensuk ◽  
Viton Uthaisangsuk

In this work, 3D ductile fracture locus was determined for the advanced high strength (AHS) steel sheet grade DP780 using a hybrid approach between experiment and FE simulation. Tensile tests of different sample geometries were performed for the investigated dual phase steel, by which varying stress triaxiality (η) and lode angle (θ) values developed in the material during loading were introduced. During the tests, the direct current potential drop (DCPD) method and digital image correlation (DIC) technique were applied for identifying crack initiation on the micro-scale and fracture of the specimens due to local plastic deformation. Obtained force and displacement curves were correlated with the electric potential curves. Then, the moments of crack onset were determined for various states of stress. In parallel, the most critical areas of deformed samples before fracture were observed by the DIC method. Subsequently, FE simulations of the tensile tests were carried out and calculated local stresses and strains were gathered. The stress triaxialities, equivalent plastic strains and lode angles were evaluated for the corresponding detected areas. These threshold variables obtained from different specimens were plotted as the 3D failure locus for defining crack initiation and fracture occurrence in the DP steel.


2021 ◽  
Vol 11 (12) ◽  
pp. 5430
Author(s):  
Paolo Neri ◽  
Alessandro Paoli ◽  
Ciro Santus

Vibration measurements of turbomachinery components are of utmost importance to characterize the dynamic behavior of rotating machines, thus preventing undesired operating conditions. Local techniques such as strain gauges or laser Doppler vibrometers are usually adopted to collect vibration data. However, these approaches provide single-point and generally 1D measurements. The present work proposes an optical technique, which uses two low-speed cameras, a multimedia projector, and three-dimensional digital image correlation (3D-DIC) to provide full-field measurements of a bladed disk undergoing harmonic response analysis (i.e., pure sinusoidal excitation) in the kHz range. The proposed approach exploits a downsampling strategy to overcome the limitations introduced by low-speed cameras. The developed experimental setup was used to measure the response of a bladed disk subjected to an excitation frequency above 6 kHz, providing a deep insight in the deformed shapes, in terms of amplitude and phase distributions, which could not be feasible with single-point sensors. Results demonstrated the system’s effectiveness in measuring amplitudes of few microns, also evidencing blade mistuning effects. A deeper insight into the deformed shape analysis was provided by considering the phase maps on the entire blisk geometry, and phase variation lines were observed on the blades for high excitation frequency.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1154
Author(s):  
Dario De Domenico ◽  
Antonino Quattrocchi ◽  
Damiano Alizzio ◽  
Roberto Montanini ◽  
Santi Urso ◽  
...  

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.


2021 ◽  
Vol 11 (2) ◽  
pp. 879
Author(s):  
Eleni Tsangouri ◽  
Hasan Ismail ◽  
Matthias De Munck ◽  
Dimitrios G. Aggelis ◽  
Tine Tysmans

Internal interfacial debonding (IID) phenomena on sandwich façade insulated panels are detected and tracked by acoustic emission (AE). The panels are made of a thin and lightweight cementitious composite skin. In the lab, the panels are tested under incremental bending simulating service loads (i.e., wind). Local (up to 150 mm wide) skin-core detachments are reported in the early loading stage (at 5% of ultimate load) and are extensively investigated in this study, since IID can detrimentally affect the long-term durability of the structural element. A sudden rise in the AE hits rate and a shift in the wave features (i.e., absolute energy, amplitude, rise time) trends indicate the debonding onset. AE source localization, validated by digital image correlation (DIC) principal strains and out-of-plane full-field displacement mapping, proves that early debonding occurs instantly and leads to the onset of cracks in the cementitious skin. At higher load levels, cracking is accompanied by local debonding phenomena, as proven by RA value increases and average frequency drops, a result that extends the state-of-the-art in the fracture assessment of concrete structures (Rilem Technical Committee 212-ACD). Point (LVDT) and full-field (AE/DIC) measurements highlight the need for a continuous and full-field monitoring methodology in order to pinpoint the debonded zones, with the DIC technique accurately reporting surface phenomena while AE offers in-volume damage tracking.


Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


2005 ◽  
Vol 297-300 ◽  
pp. 2410-2415 ◽  
Author(s):  
Dong Hak Kim ◽  
Jeong Hyun Lee ◽  
Ho Dong Kim ◽  
Ki Ju Kang

A toughness locus Jc-Q for a ductile steel, SA106 Grade C used in the main steam piping of nuclear power plants, has been experimentally evaluated. Along with the standard fracture test procedure for J-R curve, Q as the second parameter governing stress triaxiality nearby the crack tip is measured from the displacements nearby the side necking which occurs near the crack tip on the lateral surface of a fracture specimen. The displacements nearby the side necking are measured from the digital images taken during the fracture experiment based on Stereoscopic Digital Photography (SDP) and high resolution Digital Image Correlation (DIC) software. The crack length is monitored by Direct Current Potential Drop (DCPD) method and the J-R curve is determined according to ASTM standard E1737-96. The effects of crack length, specimen geometry and thickness of specimen are studied, which are included in the toughness locus Jc-Q.


Sign in / Sign up

Export Citation Format

Share Document