Experimental and Analytical Study for Collapse Characteristics of 45 Deg Cylinder-to-Cylinder Intersections

Author(s):  
Shunji Kataoka ◽  
Takuya Sato ◽  
Takuro Honda ◽  
Masashi Takeda ◽  
Toshiya Tanimoto

The 45-degree laterals are widely used in pressure vessel nozzles and piping branch connections. Though the pressure design is always important for the 45-degree laterals, it is not a simple work because it has severe stress concentrations, it is difficult to weld and inspect, and there are some discrepancy between a conventional design and design by linear and nonlinear finite element analysis. In previous papers, authors studied the characteristics of both 90 degree tee and 45 degree laterals using an inelastic finite element analysis based on simplified shell element models and proposed Collapse Strength Reduction Factor (CSRF) based on an inelastic analysis were compared. In this paper, results of the burst test of 45-degree lateral and 90 degree intersection were shown. The fracture surface of 45-degree lateral was different from that of 90-degree intersection. These experimental results are compared with the inelastic finite element analysis results focusing on the local stress and strain behaviors. It was found that the magnitude of the local strain affected the burst pressure. Consideration should be given on the local failure due to excessive plastic strain under high stress triaxiality for the design of the 45-degree lateral by inelastic analysis.

2011 ◽  
Vol 488-489 ◽  
pp. 654-657
Author(s):  
Radu Negru ◽  
Liviu Marsavina ◽  
Hannelore Filipescu ◽  
Cristiana Caplescu

The aim of this paper is the application of two methods for notch fatigue life assessment, methods which are based on finite element analysis: the theory of critical distances and the volumetric method. Firstly, un-notched and notched specimens (for three different geometries) were tested in tension under constant-amplitude loading. The use of theory of critical distances (TCD) to predict the notch fatigue life involves the determination of the material characteristic length L based on experimental results obtained for the un-notched and one type of notched specimens. For the others notched geometries, based on linear-elastic finite element analysis, the fatigue strength is predicted using the TCD. In order to apply the volumetric method, elastic-plastic stress field around notches are considered and notch strength reduction factor are determined. Finally, the predictions of the two methods were compared with experimental fatigue data for notched specimens.


Author(s):  
Burak Can Cerik ◽  
Sung-Ju Park ◽  
Joonmo Choung

A Hosford-Coulomb type ductile fracture surface was developed for DH36 grade steels. The fracture experiments reported in the literature, which consist of tests with notched tensile specimens, tensile specimens with a central hole, shear specimen and disc specimens for punch specimens, were utilized in a detailed finite element analysis of each experiment to evaluate the evolution of local stress and strain fields and identify plasticity and fracture response of DH36. The developed plasticity model consists of a von Mises yield surface, an associated flow rule and a combined Swift-Voce type isotropic hardening rule. The loading paths to fracture initiation were determined in terms of stress triaxiality and normalized Lode angle parameter histories. Finally, the Hosford-Coulomb fracture surface was calibrated using the finite element analysis results and adapting a linear damage accumulation law.


Author(s):  
Md Abu Hasan

This study compares the effects of lingualized and linear occlusion schemes on the stress distribution of an implant retained mandibular overdenture (IRO) using finite element analysis (FEA). A high fidelity solid model of mandibular overdenture incorporating cusps and fossae of occlusal surface with two anterior implants in the canine regions and residual ridge support in the posterior region of the alveolar bone was modeled in SolidWorks and imported to ANSYS for stress analysis. The load was applied vertically to the central grooves and buccal cusp tips of the premolars and molar teeth for the lingualized and linear occlusion respectively. The loading magnitudes were 200 N on the premolars and 200 N on the molar teeth with multiple contact locations. The results show that the linear occlusion scheme generated higher stress in the implants and the prosthetic bar than the lingualized occlusion. The locations of high stress concentrations were the neck of the implants and the implant-prosthetic bar intersection for both the occlusion schemes. However, in the cortical bone lingualized occlusion loading scheme generated higher stress (max principal stress) than the linear one suggesting possibility of greater bone loss. The results of this study could be used to comprehend the stress distribution in the denture teeth, base, bone-implant interface and surrounding bone for the two occlusion concepts and may be of help to the clinicians in choosing the right scheme for the edentulous patients.


1995 ◽  
Vol 14 (9) ◽  
pp. 965-987 ◽  
Author(s):  
Larry B. Lessard ◽  
Olivia P. Eilers ◽  
Mahmood M. Shokrieh

A two-dimensional finite element analysis is performed in order to analyze and improve the performance of the three-rail shear test specimen as prescribed by the ASTM Standard Guide for testing of in-plane shear properties of composite laminates [1]. Of main interest is the location of high-magnitude stresses in the matrix direction that affect the fatigue life of the specimen. Through finite element analysis, the optimal specimen configuration is determined by inserting slots in the positions at which there are stress concentrations. This has the effect of transferring the location of high stress away from critical areas, thus increasing the fatigue life of the specimen. The results are verified by three-rail shear tests performed for both standard un-notched and new notched specimens. The notched specimens show great improvement in both static strength and fatigue life.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


2014 ◽  
Vol 49 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Baris Sabuncuoglu ◽  
Svetlana Orlova ◽  
Larissa Gorbatikh ◽  
Stepan V Lomov ◽  
Ignaas Verpoest

1994 ◽  
Vol 3 (5) ◽  
pp. 096369359400300
Author(s):  
M. Hadjiprocopiou ◽  
G.T. Reed ◽  
L. Hollaway ◽  
A.M. Thorne

Finite Element analysis is used to determine and to minimise the stress concentrations which arise in a “Smart” material system due to the embedded optical fibre sensors. The FE results show that with careful selection of the coating stiffness and thickness the stress concentrations caused by the fibre inclusion in the host material can be reduced.


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


Author(s):  
Ruchi D. Chande ◽  
John R. Owen ◽  
Robert S. Adelaar ◽  
Jennifer S. Wayne

The ankle joint, comprised of the distal ends of the tibia and fibula as well as talus, is key in permitting movement of the foot and restricting excessive motion during weight-bearing activities. Medial ankle injury occurs as a result of pronation-abduction or pronation-external rotation loading scenarios in which avulsion of the medial malleolus or rupture of the deltoid ligament can result if the force is sufficient [1]. If left untreated, the joint may experience more severe conditions like osteoarthritis [2]. To avoid such consequences, medial ankle injuries — specifically bony injuries — are treated with open reduction and internal fixation via the use of plates, screws, wires, or some combination thereof [1, 3–4]. In this investigation, the mechanical performance of two such devices was compared by creating a 3-dimensional model of an earlier cadaveric study [5], validating the model against the cadaveric data via finite element analysis (FEA), and comparing regions of high stress to regions of experimental failure.


Sign in / Sign up

Export Citation Format

Share Document