Material Test and Analysis for Pressure Vessel Rupture Study Under Fire in Plant

Author(s):  
Yoshiyasu Itoh ◽  
Yoshiyuki Waki ◽  
Kazuyuki Kasuya

In case fire incident occurs in Oil and Gas plant, pressure vessels will be exposed to fire. Though entire system will be depressurized when the fire is detected, internal pressure may still remain in the pressure vessels. Therefore, pressure vessels, if leakage of its internal fluids will escalate the incident, shall be confirmed that they will withstand internal pressure without rupture at least until internal pressure is decreased down to safe level. For design for such critical pressure vessel, a pressure vessel rupture study is conducted in addition to design code calculations. As safer plant design is requested in recent projects, demands for the pressure vessel rupture study are also growing. In this research, material data at high temperature range, that are necessary to obtain reliable results by the pressure vessel rupture study, were measured for carbon steel and stainless steel type304 and type304L. In addition, pressure vessel rupture studies were performed for two sample pressure vessels by means of FEM analyses and calculation methods in published design guidelines.

Author(s):  
Yoshiyasu Ito ◽  
Akira Tsuruoka ◽  
Yoshiyuki Waki ◽  
Hiroko Osedo

In case of fire occurring in an Oil and Gas facility, pressurized vessels may be exposed to fire. Though the entire system will be depressurized once a fire is detected, vessels may rupture, leading to risk of flammable, toxic or cryogenic fluid being released. Therefore, pressure vessels should be designed to withstand internal pressure without rupture in fire situations, at least until the system pressure can be decreased to a safe level. A pressure vessel rupture study should be conducted in addition to design code calculation to ensure a safe design in case of fire. As part of the recent trend for safer plant design, demand for pressure vessel rupture studies is growing. In our previous presentation (PVP2015-45260 [1]), the material data for carbon steel (SA-516 Gr.70) and stainless steel (SA240 SUS type304 and SUS type304L) at the high temperature range were obtained by material testing and presented as our study result. For the present research, pressure vessel rupture studies were performed for carbon steel and stainless steel using FEM analysis and calculation methods in published design guidelines for various conditions (e.g. heating area and shell thickness, etc.). In conclusion, a procedure for pressure vessel rupture study is proposed.


Author(s):  
Tetsuya Kawai ◽  
Yasuhiro Mitarai ◽  
Yoshiyuki Waki ◽  
Yoko Yamabe-Mitarai ◽  
Kazuhiro Kimura ◽  
...  

In case of fire occurring in an Oil and Gas facility, pressurized vessels may be exposed to fire. Though the entire system will be depressurized once a fire is detected, vessels may rupture, leading to risk of flammable, toxic or cryogenic fluid being released into atmosphere. Therefore, pressure vessels should be designed to withstand internal pressure without rupture during exposure to fire, at least until the system pressure can be decreased to a safe level. A pressure vessel rupture study should be conducted in addition to design code calculation in order to ensure a safe design in case of fire. As part of the recent trend for safer plant design, demand for pressure vessel rupture studies is growing and becoming a necessary requirement. In our previous presentation (PVP2015-45260 [1]), the material data for carbon steel (SA-516 Gr.70) and stainless steel (SA240 type304 and type304L) at high temperature range were obtained through material testing and were presented as our study result. And in the other presentation (PVP2016-63184 [6]) that we’ve made, procedure for pressure vessel rupture study by FEM using the above mentioned material data was developed. For the present research, material testing in a dynamic condition wherein a more similar condition to an actual fire case were performed and comparison between the test results and FEM analysis was done. In conclusion, recommendation for the application of the pressure vessel rupture study was justified and necessity for further development of the above mentioned study was determined.


1988 ◽  
Vol 110 (2) ◽  
pp. 168-176 ◽  
Author(s):  
M. R. Baum

In the event of an accident, an industrial plant must be capable of being shut down in a safe, controlled manner. Thus, when a plant containing high-pressure fluids is being designed, the potential damage to essential shut-down equipment resulting from rupture of the pressure envelope must be assessed and, where necessary, protection provided. For example, pressure vessel rupture may generate missiles; i.e., sections of the pressure envelope become detached and are accelerated to significant velocities by the expanding fluid contents. An assessment of the consequences of pressure vessel rupture must therefore include estimates of the likely extent of the missile impact zone and the potential damage to equipment within that zone, which are both functions of the missile velocity. This paper describes preliminary guidelines for defining the velocity of the various types of missile which can be generated by pressure vessel failure. The recommended velocities are based on experimental evidence, including a large body of previously unpublished BNL (Berkeley Nuclear Laboratories) data. The extent of the hazard zone is also considered.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


Author(s):  
Jan Keltjens ◽  
Philip Cornelissen ◽  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

The ASME Section VIII Division 3 Pressure Vessel Design Code adopted in its 2004 edition a significant change of the design margin against plastic collapse. There are several reasons and justifications for this code change, in particular the comparison with design margins used for high pressure equipment in Europe. Also, the ASME Pressure Vessel Code books themselves are not always consistent with respect to design margin. This paper discusses not only the background material for the code change, but also gives some practical information on when pressure vessels could be designed to a thinner wall.


1996 ◽  
Vol 118 (4) ◽  
pp. 429-433
Author(s):  
H. Chen ◽  
J. Jin ◽  
J. Yu

Results from finite element analysis were used to show that the stress index kσ and the nondimensionalized highly stressed hub length kh of a flat head with a round corner in a pressure vessel subjected to internal pressure are functions of three dimensionless parameters: λ ≡ h/dt, η ≡ t/d, and ρ ≡ r/t. Approximate formulas for estimating kσ and kh from λ, η, and ρ p are given. The formulas can be used for determining a suitable fillet radius for a flat head in order to reduce the fabricating cost and to keep the stress intensity at the fillet under an acceptable limit.


Author(s):  
Yang-chun Deng ◽  
Gang Chen

To save material, the safety factor of pressure vessel design standards is gradually decreased from 5.0 to 2.4 in ASME Boiler and Pressure Vessel Codes. So the design methods of pressure vessel should be more rationalized. Considering effects of material strain hardening and non-linear structural deformation, the elastic-plastic stress analysis is the most suitable for pressure vessels design at present. This paper is based on elastic-plastic theory and considers material strain hardening and structural deformation effects. Elastic-plastic stress analyses of pressure vessels are summarized. Firstly, expressions of load and structural deformation relationship were introduced for thin-walled cylindrical and spherical vessels under internal pressure. Secondly, the plastic instability for thin-walled cylindrical and spherical vessels under internal pressure were analysed. Thirdly, to prevent pressure vessels from local failure, the ductile fracture strain of materials was discussed.


Author(s):  
Susumu Terada

Many high pressure vessels are used in isostatic pressing, polyethylene process and crystal growth application. The design condition of these high pressure vessels becomes more severe in pressure, temperature and cyclic operation. It was desired that design code for such high pressure vessels be issued enabling more reasonable design than ASME Section VIII Div.1 and Div.2. Against above request, ASME Sec. VIII Div.3 was issued in 1997. While in Japan the subcommittee for high pressure vessels in HPI was started in October 1997 in order to issue the Japanese code for high pressure vessels. At first the background of ASME Div.3 was investigated and then “Rules for Construction of High Pressure Vessels: HPIS C 106” was issued in 2005. That was some differences from ASME Div.3, because we considered that ASME Div.3 should be modified. The author has also been appointed as a member of ASME SG-HPV Committee since 2003. The author has proposed some modification and addition of rules for ASME Div.3 since 2000 and most of them already have been approved and incorporated in ASME Div.3. The background of these modification and addition of rules are shown in this paper.


Author(s):  
Johan H. van Ravenhorst ◽  
Remko Akkerman

Pressure vessel manufacturing is currently dominated by the filament winding process. When higher production rates are required, circular braiding can be considered as an alternative because hundreds of yarns are deposited simultaneously from interlacing spools. The process has a high repeatability and is suited for automated series production, as is currently shown with the production of a-pillars and rockers in the automotive industry. Important manufacturing constraints related to the overbraiding of cylindrical pressure vessels are to avoid excessive jamming of the braid, typically occurring at a small mandrel radius, and to achieve a 100% cover factor at the largest mandrel diameter. In this paper, design guidelines for braiding of cylindrical pressure vessels are proposed. It is shown that a proper choice of the yarn cross-sectional area size and of yarn width-to-thickness aspect ratio can improve the design feasibility, but an adjustment of the braid angle can be required as well.


Author(s):  
Shane Haladuick ◽  
Markus R. Dann

Pressure vessels are subject to deterioration processes, such as corrosion and fatigue. If left unchecked these deterioration processes can lead to failure; therefore, inspections and repairs are performed to mitigate this risk. Oil and gas facilities often have regular scheduled shutdown periods during which many components, including the pressure vessels, are disassembled, inspected, and repaired or replaced if necessary. The objective of this paper is to perform a decision analysis to determine the best course of action for an operator to follow after a pressure vessel is inspected during a shutdown period. If the pressure vessel is inspected and an unexpectedly deep corrosion defect is detected an operator has two options: schedule a repair for the next shutdown period, or perform an immediate unscheduled repair. A scheduled repair is the preferred option as it gives the decision maker lead time to accommodate the added labour and budgetary requirements. This preference is accounted for by a higher cost of immediate unscheduled repairs relative to the cost of a scheduled repair at the next shutdown. Depending on the severity of deterioration either option could present the optimal course of action. In this framework the decision that leads to the minimum expected cost is selected. A stochastic gamma process was used to model the future deterioration growth using the historical inspection data, considering the measurement error and uncertain initial wall thickness, to determine the probability of pressure vessel failure. The decision analysis framework can be used to aid decision makers in deciding when a repair or replacement action should be performed. This method can be used in real time decision making to inform the decision maker immediately post inspection. A numerical example of a corroding pressure vessel illustrates the method.


Sign in / Sign up

Export Citation Format

Share Document