Risk Based Inspection Planning for Deteriorating Pressure Vessels

Author(s):  
Shane Haladuick ◽  
Markus R. Dann

Pressure vessels are subject to deterioration processes, such as corrosion and fatigue. If left unchecked these deterioration processes can lead to failure; therefore, inspections and repairs are performed to mitigate this risk. Oil and gas facilities often have regular scheduled shutdown periods during which many components, including the pressure vessels, are disassembled, inspected, and repaired or replaced if necessary. The objective of this paper is to perform a decision analysis to determine the best course of action for an operator to follow after a pressure vessel is inspected during a shutdown period. If the pressure vessel is inspected and an unexpectedly deep corrosion defect is detected an operator has two options: schedule a repair for the next shutdown period, or perform an immediate unscheduled repair. A scheduled repair is the preferred option as it gives the decision maker lead time to accommodate the added labour and budgetary requirements. This preference is accounted for by a higher cost of immediate unscheduled repairs relative to the cost of a scheduled repair at the next shutdown. Depending on the severity of deterioration either option could present the optimal course of action. In this framework the decision that leads to the minimum expected cost is selected. A stochastic gamma process was used to model the future deterioration growth using the historical inspection data, considering the measurement error and uncertain initial wall thickness, to determine the probability of pressure vessel failure. The decision analysis framework can be used to aid decision makers in deciding when a repair or replacement action should be performed. This method can be used in real time decision making to inform the decision maker immediately post inspection. A numerical example of a corroding pressure vessel illustrates the method.

Author(s):  
R. M. Chandima Ratnayake ◽  
Tore Markeset

Oil and Gas (O&G) platforms in the North Sea are facing aging problems as many of the installations have matured and are approaching their design lifetime. Flowlines are used to transport oil and gas well stream from the wellhead to the production manifold. They are categorised as one of the most critical components on a production facility. Flowline degradation takes place due to corrosion and erosion. The deterioration of a flowline may increase the risk of leakages, ruptures, etc., which shall lead to serious HSE (health, safety and environmental) and financial consequences. Any such risks have a direct impact on the O&G installation’s technical integrity as well as the operator’s sustainability concerns. Conventionally, pipelines are designed with safety provisions to provide a theoretical minimum failure rate over the life span. Furthermore, to reduce the risk of failure various techniques are routinely used to monitor the status of pipelines during the operation phase. The existing methods of flowline health monitoring planning requires one to take into consideration the operator’s plant strategy, flowline degradation mechanisms, historical data, etc. A technical condition report is made based on findings’ reports and degradation trends. This report recommends the inspection of a number of points on the flowlines in a certain year using non-destructive evaluation methods such as visual inspection, ultrasonic testing, radiographic testing, etc. Based on the technical condition report, in general for a certain preventive maintenance shutdown, 10 to 15 flowline inspection openings are accommodated as finance, time and resource availability are taken into consideration. However, it is customary to plan to open more locations in a certain inspection package than can be inspected and minimization of such points is at present done on an ad hoc basis. This paper suggests a formal model and a framework to formally minimize the number of visual inspections by executing the plant strategy as well as HSE concerns. The model is derived using analytic hierarchy process (AHP) framework, which is a multi-criteria decision-making approach. The model is developed based on literature, industrial practice, experience as well as real inspection data from a mature offshore O&G installation located on the Norwegian Continental Shelf.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Paulo A. M. Barbosa ◽  
Plácido R. Pinheiro ◽  
Francisca R. V. Silveira ◽  
Marum Simão Filho

During the software development process, the decision maker (DM) must master many variables inherent in this process. Software releases represent the order in which a set of requirements is implemented and delivered to the customer. Structuring and enumerating a set of releases with prioritized requirements represents a challenging task because the requirements contain their characteristics, such as technical precedence, the cost required for implementation, the importance that one or more customers add to the requirement, among other factors. To facilitate this work of selection and prioritization of releases, the decision maker may adopt some support tools. One field of study already known to solve this type of problem is the Search-Based Software Engineering (SBSE) that uses metaheuristics as a means to find reasonable solutions taking into account a set of well-defined objectives and constraints. In this paper, we seek to increase the possibilities of solving the Next Release Problem using the methods available in Verbal Decision Analysis (VDA). We generate a problem and submit it so that the VDA and SBSE methods try to resolve it. To validate this research, we compared the results obtained through VDA and compared with the SBSE results. We present and discuss the results in the respective sections.


2017 ◽  
Vol 57 (2) ◽  
pp. 647
Author(s):  
Yury Sokolov

The industry expenditure savings motive requires a cost/benefit analysis to optimise Integrity Management budgets. The challenge of estimating precise risk costs requires that numeric Probabilities of Failure (PoF) be known at the highest possible level of confidence, as equipment items specific PoFs govern the actual probability of financial losses and safety implications. The first-hand information on the equipment actual integrity condition is contained in numeric results of integrity inspections. In practice, these results are seldom analysed statistically, being collapsed into single ‘worst case’ values. This simplification prevents assessing of equipment specific actual PoFs and from quantifying failure risks when using traditional methods. We developed a new-generation inspection planning and assessment strategy applied to oil and gas pressure equipment. Evaluating equipment PoFs enables assessing risk costs and optimising the budgets, as well as setting justified internal inspection coverage and frequency objectives. This is achieved by a statistical analysis of numeric inspection data. Existing inspection data (such as ultrasonic testing spot-checks) can be used for a first-pass analysis. Statistical plotting of such data automatically visualises the data quality, and the relevant recommendations for improving inspection coverage or tools are drawn where necessary. We found that two criteria drive integrity decision making: failure total costs and annual fatality expectancies. These criteria are mutually complementary. Both need to be considered for a safe and profitable plant operation. Equipment individual risk control strategy is then developed from safety compliance and budget savings maximising standpoints, thereby also enabling confident design and procurement decisions. This is a new-generation strategy suitable for bringing together all branches of plant management and for improving confidence of the parties. We see it as an evolutionary update to Risk Based Inspection and Maintenance practice, which is now in high demand due to cost pressures.


Author(s):  
Daniel Peters ◽  
Gregory Mital ◽  
Adam P. Maslowski

This paper provides an overview of the significant revisions pending for the upcoming 2017 edition of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels, as well as potential changes to future editions under consideration of the Subgroup on High Pressure Vessels (SG-HPV). Changes to the 2017 edition include the removal of material information used in the construction of composite reinforced pressure vessels (CRPV); this information has been consolidated to the newly-developed Appendix 10 of ASME BPVC Section X, Fiber-Reinforced Plastic Pressure Vessels. Similarly, the development of the ASME CA-1, Conformity Assessment Requirements standard necessitated removal of associated conformity assessment information from Section VIII Division 3. Additionally, requirements for the assembly of pressure vessels at a location other than that listed on the Certificate of Authorization have been clarified with the definitions of “field” and “intermediate” sites. Furthermore, certain design related issues have been addressed and incorporated into the current edition, including changes to the fracture mechanics rules, changes to wires stress limits in wire-wound vessels, and clarification on bolting and end closure requirements. Finally, the removal of Appendix B, Suggested Practice Regarding Post-Construction Requalification for High Pressure Vessels, will be discussed, including a short discussion of the new appendix incorporated into the updated edition of ASME PCC-3, Inspection Planning Using Risk Based Methods. Additionally, this paper discusses some areas in Section VIII Division 3 under consideration for improvement. One such area involves consolidation of material models presented in the book into a central area for easier reference. Another is the clarification of local strain limit analysis and the intended number and types of evaluations needed for the non-linear finite element analyses. The requirements for test locations in prolongations on forgings are also being examined as well as other material that can be used in testing for vessel construction. Finally, a discussion is presented on an ongoing debate regarding “occasional loads” and “abnormal loads”, their current evaluation, and proposed changes to design margins regarding these loads.


Author(s):  
Yoshiyasu Itoh ◽  
Yoshiyuki Waki ◽  
Kazuyuki Kasuya

In case fire incident occurs in Oil and Gas plant, pressure vessels will be exposed to fire. Though entire system will be depressurized when the fire is detected, internal pressure may still remain in the pressure vessels. Therefore, pressure vessels, if leakage of its internal fluids will escalate the incident, shall be confirmed that they will withstand internal pressure without rupture at least until internal pressure is decreased down to safe level. For design for such critical pressure vessel, a pressure vessel rupture study is conducted in addition to design code calculations. As safer plant design is requested in recent projects, demands for the pressure vessel rupture study are also growing. In this research, material data at high temperature range, that are necessary to obtain reliable results by the pressure vessel rupture study, were measured for carbon steel and stainless steel type304 and type304L. In addition, pressure vessel rupture studies were performed for two sample pressure vessels by means of FEM analyses and calculation methods in published design guidelines.


Author(s):  
R. M. Chandima Ratnayake

Piping inspection in Oil and Gas (O&G) production and process facilities (P&PFs) is traditionally set up by dividing the overall piping components into corrosion loops (CLs) reflecting similar corrosion (i.e. corrosion due to chemical or electro-chemical reaction and/or erosion-corrosion) environment and process conditions. Each CL is comprised of a few or several wall thickness measurement locations (WTMLs). The WTMLs are typically identified for each WTML ‘feature’ (e.g. straight section of a spool, bend, tee, weld, end cap, etc.) in a CL. Generally, inspection planning decisions regarding WTMLs are prioritized based on the results of risk based inspection (RBI) analysis. However, the degradation behavior is continuously changing due to the change in product and process conditions during the maturity of O&G production wells. This manuscript illustrates a methodology to visualize inspection coverage and corresponding defect finding rates (DFRs) for different WTML features in a selected sub-system of an oil and gas production and process facility. The suggested methodology aids the visualization of DFRs pertaining to different WTMLs, enabling inspection planners to assign inspection recommendations to the right location at the right time, minimizing ad hoc work. The approach also enables feedback to be provided to the plant inspection strategy (PIS), depending on the corresponding production field and P&PF, whilst reducing the cost of inspection to the asset owner by the minimization of ad hoc inspection recommendations.


Author(s):  
Yoshiyasu Ito ◽  
Akira Tsuruoka ◽  
Yoshiyuki Waki ◽  
Hiroko Osedo

In case of fire occurring in an Oil and Gas facility, pressurized vessels may be exposed to fire. Though the entire system will be depressurized once a fire is detected, vessels may rupture, leading to risk of flammable, toxic or cryogenic fluid being released. Therefore, pressure vessels should be designed to withstand internal pressure without rupture in fire situations, at least until the system pressure can be decreased to a safe level. A pressure vessel rupture study should be conducted in addition to design code calculation to ensure a safe design in case of fire. As part of the recent trend for safer plant design, demand for pressure vessel rupture studies is growing. In our previous presentation (PVP2015-45260 [1]), the material data for carbon steel (SA-516 Gr.70) and stainless steel (SA240 SUS type304 and SUS type304L) at the high temperature range were obtained by material testing and presented as our study result. For the present research, pressure vessel rupture studies were performed for carbon steel and stainless steel using FEM analysis and calculation methods in published design guidelines for various conditions (e.g. heating area and shell thickness, etc.). In conclusion, a procedure for pressure vessel rupture study is proposed.


Author(s):  
Tetsuya Kawai ◽  
Yasuhiro Mitarai ◽  
Yoshiyuki Waki ◽  
Yoko Yamabe-Mitarai ◽  
Kazuhiro Kimura ◽  
...  

In case of fire occurring in an Oil and Gas facility, pressurized vessels may be exposed to fire. Though the entire system will be depressurized once a fire is detected, vessels may rupture, leading to risk of flammable, toxic or cryogenic fluid being released into atmosphere. Therefore, pressure vessels should be designed to withstand internal pressure without rupture during exposure to fire, at least until the system pressure can be decreased to a safe level. A pressure vessel rupture study should be conducted in addition to design code calculation in order to ensure a safe design in case of fire. As part of the recent trend for safer plant design, demand for pressure vessel rupture studies is growing and becoming a necessary requirement. In our previous presentation (PVP2015-45260 [1]), the material data for carbon steel (SA-516 Gr.70) and stainless steel (SA240 type304 and type304L) at high temperature range were obtained through material testing and were presented as our study result. And in the other presentation (PVP2016-63184 [6]) that we’ve made, procedure for pressure vessel rupture study by FEM using the above mentioned material data was developed. For the present research, material testing in a dynamic condition wherein a more similar condition to an actual fire case were performed and comparison between the test results and FEM analysis was done. In conclusion, recommendation for the application of the pressure vessel rupture study was justified and necessity for further development of the above mentioned study was determined.


2013 ◽  
Vol 437 ◽  
pp. 700-704
Author(s):  
Xue Rong Ma

Aiming at the comprehensive inspection of pressure vessels in service, put forward the original test results as the basis, realize the optimization scheme of comprehensive test, the possibility is to a minimum missing caused in pressure vessel that the crack (defects) are greater than the critical, so as to ensure the safety of the structure at the same time, the workload and the cost is reduced to the lowest. Through the test tank group, this method is proved to be feasible.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Shane Haladuick ◽  
Markus R. Dann

Pressure vessels are subject to deterioration processes, such as corrosion and fatigue, which can lead to failure. Inspections and repairs are performed to mitigate this risk. Large industrial facilities (e.g., oil and gas refineries) often have regularly scheduled shutdown periods during which many components, including the pressure vessels, are disassembled, inspected, and repaired if necessary. This paper presents a decision analysis framework for the risk-based maintenance (RBM) planning of corroding pressure vessels. After a vessel has been inspected, this framework determines the optimal maintenance time of each defect, where the optimal time is the one that minimizes the total expected cost over the lifecycle of the vessel. The framework allows for multiple defects and two failure modes (leak and burst), and accounts for the dependent failure events. A stochastic gamma process is used to model the future deterioration growth to determine the probability of vessel failure. The novel growth model presents a simple method to predict both the depth and length of each corrosion defect to enable burst analysis. The decision analysis framework can aid decision makers in deciding when a repair or replacement should be performed. This method can be used to immediately inform the decision maker of the optimal decision postinspection. A numerical example of a corroding pressure vessel illustrates the method.


Sign in / Sign up

Export Citation Format

Share Document