Dynamic Material Test and Analysis for Rupture Study for Pressure Vessel Exposed to Fire in Plant

Author(s):  
Tetsuya Kawai ◽  
Yasuhiro Mitarai ◽  
Yoshiyuki Waki ◽  
Yoko Yamabe-Mitarai ◽  
Kazuhiro Kimura ◽  
...  

In case of fire occurring in an Oil and Gas facility, pressurized vessels may be exposed to fire. Though the entire system will be depressurized once a fire is detected, vessels may rupture, leading to risk of flammable, toxic or cryogenic fluid being released into atmosphere. Therefore, pressure vessels should be designed to withstand internal pressure without rupture during exposure to fire, at least until the system pressure can be decreased to a safe level. A pressure vessel rupture study should be conducted in addition to design code calculation in order to ensure a safe design in case of fire. As part of the recent trend for safer plant design, demand for pressure vessel rupture studies is growing and becoming a necessary requirement. In our previous presentation (PVP2015-45260 [1]), the material data for carbon steel (SA-516 Gr.70) and stainless steel (SA240 type304 and type304L) at high temperature range were obtained through material testing and were presented as our study result. And in the other presentation (PVP2016-63184 [6]) that we’ve made, procedure for pressure vessel rupture study by FEM using the above mentioned material data was developed. For the present research, material testing in a dynamic condition wherein a more similar condition to an actual fire case were performed and comparison between the test results and FEM analysis was done. In conclusion, recommendation for the application of the pressure vessel rupture study was justified and necessity for further development of the above mentioned study was determined.

Author(s):  
Yoshiyasu Ito ◽  
Akira Tsuruoka ◽  
Yoshiyuki Waki ◽  
Hiroko Osedo

In case of fire occurring in an Oil and Gas facility, pressurized vessels may be exposed to fire. Though the entire system will be depressurized once a fire is detected, vessels may rupture, leading to risk of flammable, toxic or cryogenic fluid being released. Therefore, pressure vessels should be designed to withstand internal pressure without rupture in fire situations, at least until the system pressure can be decreased to a safe level. A pressure vessel rupture study should be conducted in addition to design code calculation to ensure a safe design in case of fire. As part of the recent trend for safer plant design, demand for pressure vessel rupture studies is growing. In our previous presentation (PVP2015-45260 [1]), the material data for carbon steel (SA-516 Gr.70) and stainless steel (SA240 SUS type304 and SUS type304L) at the high temperature range were obtained by material testing and presented as our study result. For the present research, pressure vessel rupture studies were performed for carbon steel and stainless steel using FEM analysis and calculation methods in published design guidelines for various conditions (e.g. heating area and shell thickness, etc.). In conclusion, a procedure for pressure vessel rupture study is proposed.


Author(s):  
Yoshiyasu Itoh ◽  
Yoshiyuki Waki ◽  
Kazuyuki Kasuya

In case fire incident occurs in Oil and Gas plant, pressure vessels will be exposed to fire. Though entire system will be depressurized when the fire is detected, internal pressure may still remain in the pressure vessels. Therefore, pressure vessels, if leakage of its internal fluids will escalate the incident, shall be confirmed that they will withstand internal pressure without rupture at least until internal pressure is decreased down to safe level. For design for such critical pressure vessel, a pressure vessel rupture study is conducted in addition to design code calculations. As safer plant design is requested in recent projects, demands for the pressure vessel rupture study are also growing. In this research, material data at high temperature range, that are necessary to obtain reliable results by the pressure vessel rupture study, were measured for carbon steel and stainless steel type304 and type304L. In addition, pressure vessel rupture studies were performed for two sample pressure vessels by means of FEM analyses and calculation methods in published design guidelines.


Author(s):  
Shane Haladuick ◽  
Markus R. Dann

Pressure vessels are subject to deterioration processes, such as corrosion and fatigue. If left unchecked these deterioration processes can lead to failure; therefore, inspections and repairs are performed to mitigate this risk. Oil and gas facilities often have regular scheduled shutdown periods during which many components, including the pressure vessels, are disassembled, inspected, and repaired or replaced if necessary. The objective of this paper is to perform a decision analysis to determine the best course of action for an operator to follow after a pressure vessel is inspected during a shutdown period. If the pressure vessel is inspected and an unexpectedly deep corrosion defect is detected an operator has two options: schedule a repair for the next shutdown period, or perform an immediate unscheduled repair. A scheduled repair is the preferred option as it gives the decision maker lead time to accommodate the added labour and budgetary requirements. This preference is accounted for by a higher cost of immediate unscheduled repairs relative to the cost of a scheduled repair at the next shutdown. Depending on the severity of deterioration either option could present the optimal course of action. In this framework the decision that leads to the minimum expected cost is selected. A stochastic gamma process was used to model the future deterioration growth using the historical inspection data, considering the measurement error and uncertain initial wall thickness, to determine the probability of pressure vessel failure. The decision analysis framework can be used to aid decision makers in deciding when a repair or replacement action should be performed. This method can be used in real time decision making to inform the decision maker immediately post inspection. A numerical example of a corroding pressure vessel illustrates the method.


1988 ◽  
Vol 110 (2) ◽  
pp. 168-176 ◽  
Author(s):  
M. R. Baum

In the event of an accident, an industrial plant must be capable of being shut down in a safe, controlled manner. Thus, when a plant containing high-pressure fluids is being designed, the potential damage to essential shut-down equipment resulting from rupture of the pressure envelope must be assessed and, where necessary, protection provided. For example, pressure vessel rupture may generate missiles; i.e., sections of the pressure envelope become detached and are accelerated to significant velocities by the expanding fluid contents. An assessment of the consequences of pressure vessel rupture must therefore include estimates of the likely extent of the missile impact zone and the potential damage to equipment within that zone, which are both functions of the missile velocity. This paper describes preliminary guidelines for defining the velocity of the various types of missile which can be generated by pressure vessel failure. The recommended velocities are based on experimental evidence, including a large body of previously unpublished BNL (Berkeley Nuclear Laboratories) data. The extent of the hazard zone is also considered.


Author(s):  
Erik Garrido ◽  
Euro Casanova

It is a regular practice in the oil industry to modify mechanical equipment to incorporate new technologies and to optimize production. In the case of pressure vessels, it is occasionally required to cut large openings in their walls in order to have access to the interior part of the equipment for executing modifications. This cutting process produces temporary loads, which were obviously not considered in the original mechanical design. Up to now, there is not a general purpose specification for approaching the assessments of stress levels once a large opening in a vertical pressure vessel has been made. Therefore stress distributions around large openings are analyzed on a case-by-case basis without a reference scheme. This work studies the distribution of the von Mises equivalent stresses around a large opening in FCC Regenerators during internal cyclone replacement, which is a frequently required practice for this kind of equipment. A finite element parametric model was developed in ANSYS, and both numerical results and illustrating figures are presented.


Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Zheng Zhang ◽  
Xiaolong Qian ◽  
Yufeng Zhou ◽  
...  

Temper embrittlement is a common damage mechanism of pressure vessels in the chemical and petrochemical industry serviced in high temperature, which results in the reduction of roughness due to metallurgical change in some low alloy steels. Pressure vessels that are temper embrittled may be susceptible to brittle fracture under certain operating conditions which cause high stress by thermal gradients, e.g., during start-up and shutdown. 2.25Cr1-Mo steel is widely used to make hydrogenation reactor due to its superior combination of high mechanical strength, good weldability, excellent high temperature hydrogen attack (HTHA) and oxidation-resistance. However, 2.25Cr-1Mo steel is particularly susceptible to temper embrittlement. In this paper, the effect of carbide on temper embrittlement of 2.25Cr-1Mo steel was investigated. Mechanical properties and the ductile-brittle transition temperature (DBTT) of 2.25Cr-1Mo steel were measured by tensile test and impact test. The tests were performed at two positions (base metal and weld metal) and three states (original, step cooling treated and in-service for a hundred thousand hours). The content and distribution of carbides were analyzed by scanning electron microscope (SEM). The content of Cr and Mo elements in carbide was measured by energy dispersive X-ray analysis (EDS). The results showed that the embrittlement could increase the strength and reduce the plasticity. Higher carbide contents appear to be responsible for the higher DBTT. The in-service 2.25Cr-1Mo steel showed the highest DBTT and carbide content, followed by step cooling treated 2.25Cr-1Mo steel, while the as-received 2.25Cr-1Mo steel has the minimum DBTT and carbide content. At the same time, the Cr and Mo contents in carbide increased with the increasing of DBTT. It is well known that the specimen analyzed by SEM is very small in size, sampling SEM specimen is convenient and nondestructive to pressure vessel. Therefore, the relationship between DBTT and the content of carbide offers a feasible nondestructive method for quantitative measuring the temper embrittlement of 2.25Cr-1Mo steel pressure vessel.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 179
Author(s):  
Robert Neubeck ◽  
Mareike Stephan ◽  
Tobias Gaul ◽  
Bianca Weihnacht ◽  
Lars Schubert ◽  
...  

The operation efficiency and safety of pressure vessels in the oil and gas industry profits from an accurate knowledge about the inner filling distribution. However, an accurate and reliable estimation of the multi-phase height levels in such objects is a challenging task, especially when considering the high demands in practicability, robustness in harsh environments and safety regulations. Most common systems rely on impractical instrumentation, lack the ability to measure solid phases or require additional safety precautions due to their working principle. In this work, another possibility to determine height levels by attenuation tomography with guided elastic waves is proposed. The method uses a complete instrumentation on the outer vessel shell and is based on the energy conversion rates along the travel path of the guided waves. Noisy data and multiple measurements from sparsely distributed sensor networks are translated into filling levels with accuracies in the centimeter range by solving a constrained optimization problem. It was possible to simultaneously determine sand, water, and oil phases on a mock-up scale experiment, even for artificially created sand slopes. The accuracy was validated by artificial benchmarking for a horizontal vessel, giving references for constructing an affordable prototype system.


Author(s):  
Muhsin Aljuboury ◽  
Md Jahir Rizvi ◽  
Stephen Grove ◽  
Richard Cullen

The goal of this experimental study is to manufacture a bolted GFRP flange connection for composite pipes with high strength and performance. A mould was designed and manufactured, which ensures the quality of the composite materials and controls its surface grade. Based on the ASME Boiler and Pressure Vessel Code, Section X, this GFRP flange was fabricated using biaxial glass fibre braid and polyester resin in a vacuum infusion process. In addition, many experiments were carried out using another mould made of glass to solve process-related issues. Moreover, an investigation was conducted to compare the drilling of the GFRP flange using two types of tools; an Erbauer diamond tile drill bit and a Brad & Spur K10 drill. Six GFRP flanges were manufactured to reach the final product with acceptable quality and performance. The flange was adhesively bonded to a composite pipe after chamfering the end of the pipe. Another type of commercially-available composite flange was used to close the other end of the pipe. Finally, blind flanges were used to close both ends, making the pressure vessel that will be tested under the range of the bolt load and internal pressure.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


Sign in / Sign up

Export Citation Format

Share Document