Uncertainty Characterization of the TWC_Fail Through-Wall Circumferential Crack Stability Module for xLPR

Author(s):  
Richard Olson ◽  
Paul Scott

The US NRC/EPRI xLPR (eXtremely Low Probability of Rupture) probabilistic pipe fracture analysis program uses deterministic modules as the foundation for the calculation of the probability of pipe leak or rupture as a consequence of active degradation mechanisms, vibration or seismic loading. The circumferential through-wall crack stability module, TWC_Fail, evaluates through-wall circumferential crack stability based on the minimum crack size from the Net-Section Collapse or an EPFM J-estimation scheme analysis. Beyond the uncertainty of xLPR data inputs, each module has an uncertainty. This paper documents the module uncertainty for TWC_Fail. Using 32 pipe fracture experiments, including: base metal, similar metal weld, and dissimilar metal weld experiments; bend only and pressure and bend loading; pipe diameters from 2-inch nominal diameter to 42-inch diameter, cracks that range from short to long, the uncertainty of the TWC_Fail methodology is characterized. Results show that TWC_Fail predictions are sensitive to the choice of J-R curve input (J-D or J-M from C(T) specimen tests) and the fit of the stress-strain data. Module uncertainty is characterized in terms mean fit and standard deviation between predictions and experimental values.

Author(s):  
Richard Olson ◽  
Paul Scott

The US NRC/EPRI xLPR (eXtremely Low Probability of Rupture) probabilistic pipe fracture analysis program uses deterministic modules as the foundation for the calculation of the probability of pipe leak or rupture as a consequence of active degradation mechanisms, vibration or seismic loading. The circumferential crack opening displacement module, CrCOD, estimates crack opening displacement (COD) at the inside pipe surface, at the mid-wall thickness location, and at the outside pipe surface using a combined tension/crack face pressure/bending GE/EPRI-like solution. Each module has an uncertainty beyond the uncertainty of the xLPR data inputs. This paper documents the uncertainty for CrCOD. Using 36 pipe fracture experiments, including: base metal, similar metal weld, and dissimilar metal weld experiments; bend only and pressure and bend loading; static and dynamic load histories; cracks that range from short to long, the uncertainty of the CrCOD methodology is characterized. Module uncertainty is presented in terms mean fit and standard deviation between prediction and experimental values.


Author(s):  
Richard Olson ◽  
Sureshkumar Kalyanam ◽  
Jeong Soon Park ◽  
Frederick W. Brust

The LBB.ENG2[1] circumferential through-wall crack (TWC) J-estimation scheme forms the basis for the Extremely Low Probability of Rupture (xLPR)[2] probabilistic pipe fracture analysis for TWC elastic-plastic fracture mechanics (EPFM) stability assessment. The LBB.ENG2 methodology uses a reduced thickness pipe wall analogy to approximate the behavior of actual cracked pipe and sets the thickness of the reduced section by making the usual cracked pipe limit load assumption. Sometime during the original LBB.ENG2 development process, it was discovered that LBB.ENG2 was not as good as desired at predicting the maximum moment carrying capacity of pipe fracture experiments with longer cracks. Accordingly, the effective thickness equation was modified to be 1.0 at crack angles less than π/4, 4/π at angles greater than π/3, and linear between these values using a so-called ψ function. When LBB.ENG2 was coded for the TWC stability module for xLPR, TWC_fail, the behavior described above was implemented. Quite unexpectedly, with the new coding, exploration of TWC_fail’s bounds uncovered two discontinuities in the complete moment-pressure-critical crack size failure surface. Subsequently, it was found that these discontinuities were caused by the discontinuity in the derivative of the ψ function. This paper documents the approach used to smooth the TWC_fail moment-pressure-critical crack size surface by making a ψ function fit that minimizes the difference between J from LBB.ENG2 and J from finite element analyses results. The results of the finite element analyses and fitting methodology are described and the basic equations for the solution are presented. Following this, the new ψ function is applied to cases to evaluate the efficacy of the approach.


Author(s):  
Kunio Hasegawa ◽  
David Dvorak ◽  
Vratislav Mares ◽  
Bohumir Strnadel ◽  
Yinsheng Li

Abstract Fully plastic failure stresses for circumferentially surface cracked pipes subjected to tensile loading can be estimated by means of limit load criteria based on the net-section stress approach. Limit load criteria of the first type (labelled LLC-1) were derived from the balance of uniaxial forces. Limit load criteria of the second type are given in Section XI of the ASME (American Society of Mechanical Engineering) Code, and were derived from the balance of bending moment and axial force. These are labelled LLC-2. Fully plastic failure stresses estimated by using LLC-1 and LLC-2 were compared. The stresses estimated by LLC-1 are always larger than those estimated by LLC-2. From the literature survey of experimental data, failure stresses obtained by both types of LLC were compared with the experimental data. It can be stated that failure stresses calculated by LLC-1 are better than those calculated by LLC-2 for shallow cracks. On the contrary, for deep cracks, LLC-2 predictions of failure stresses are fairly close to the experimental data. Furthermore, allowable circumferential crack sizes obtained by LLC-1 were compared with the sizes given in Section XI of the ASME Code. The allowable crack sizes obtained by LLC-1 are larger than those obtained by LLC-2. It can be stated that the allowable crack size for tensile stress depends on the condition of constraint of the pipe, and the allowable cracks given in Section XI of the ASME Code are conservative.


2021 ◽  
Vol 85 (3) ◽  
pp. AB47
Author(s):  
William Murphy ◽  
Vartan Pahalyants ◽  
Nicole Gunasekera ◽  
Connie Shi ◽  
Vinod Nambudiri

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
YanQun Zhou ◽  
YeZhi Zhang ◽  
MeiXin Ye ◽  
MengSi Zhan

The seismic behavior and plasticity spreading of a neotype column-slab high pier are researched in this paper. Four scale model tests of a web slab with two boundary columns are carried out under cyclic inelastic lateral displacements simulating seismic response. The test results show that the neotype column-slab high pier has strong and stable bearing capacity, good ductility, and energy dissipation capacity. The experimental values pertaining to the spread of plasticity are derived. An approach for deriving the spread of plasticity analytically is deduced and applied to the four tests. This method accurately assesses a pier’s spread of plasticity for most ductility levels. At nearly all ductility levels, the mean difference between analytical assessments of the spread of plasticity and results from 4 large-scale tests is 12% with a 9% coefficient of variation.


2021 ◽  
Vol 15 (1) ◽  
pp. 129-138
Author(s):  
Raegan S. Hoefler ◽  
Indira T. Kudva

Background: Differences between Escherichia coli O157 (O157) strains are well-established with some of these strains being associated with major outbreaks in the US. EDL933 is one such O157 strain that caused a multistate outbreak in 1982 and has since been used as a prototype in various O157-related experiments. Objective: As O157 can readily acquire genetic mutations, we sought to determine if the genetic and phenotypic profiles of EDL933 strains from different sources would be consistent. Methods: We evaluated wild-type O157 strains stocked as EDL933 from three different laboratories, in the strain typing Polymorphic Amplified Typing Sequence (PATS) and the bovine rectal-anal junction squamous epithelial (RSE) cell- and HEp-2 cell- adherence assays. In addition, we also verified if Shiga toxins (Stx), the Locus of Enterocyte Effacement (LEE) or curli fimbriae contributed to the adherence phenotypes observed using mutant and wild-type EDL933 isolates. Results: Our results showed differences in PATS profiles and RSE cell-adherence phenotype, with no influence from the Stx or LEE genes, between EDL933 from different sources. Interestingly, the EDL933 strain that demonstrated the most contrasting diffuse adherence phenotype on RSE cells, EDL933-T, had decreased curli production that may have contributed to this phenotype. Conclusion: Our observations suggest that a comprehensive characterization of bacterial isolates, even if assigned to the same strain type prior to use in experiments, is warranted to ensure consistency and reproducibility of results.


2003 ◽  
Vol 206 (4-5) ◽  
pp. 437-445 ◽  
Author(s):  
Rajendra S. Chhabra ◽  
John R. Bucher ◽  
Mary Wolfe ◽  
Christopher Portier

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 261 ◽  
Author(s):  
Andres G. ◽  
Juan S. ◽  
Omar López ◽  
Laura Suárez C, ◽  
Jaime A. Escobar

Globalization has led to an increase in the use of small copters for different activities such as geo-referencing, agricultural fields monitoring, survillance, among others. This is the main reason why there is a strong interest in the performance of small-scale propellers used in unmanned aerial vehicles. The flow developed by rotors is complex and the estimation of its aerodynamic performance is not a trivial process. In addition, viscous effects, when the rotor operates at low Reynolds, affect its performance. In the present paper, two different computational methods, Computational Fluid Dynamics (CFD) and the Unsteady Vortex Lattice Method (UVLM) with a viscous correction, were used to study the performance of an isolated rotor of a quadcopter flying at hover. The Multi Reference Frame model and transition S S T κ - ω turbulence model were used in the CFD simulations. The tip vortex core growth was used to account for the viscous effects in the UVLM. The wake structure, pressure coefficient, thrust and torque predictions from both methods are compared. Thrust and torque results from simulations were validated by means of experimental results of a characterization of a single rotor. Finally, figure of merit of the rotor is evaluated showing that UVLM overestimates the efficiency of the rotor; meanwhile, CFD predictions are close to experimental values.


Sign in / Sign up

Export Citation Format

Share Document