Confinement Dependency on Added Stiffness Effect on a Fuel Assembly Under Axial Flow

Author(s):  
G. Ricciardi

Safety measures are required to insure the drop of control rods and that the core is cooled when the fuel assemblies of a Pressurized Water Reactor (PWR) are subjected to a seismic excitation. A way to insure these two criteria is to prevent the spacer grids from buckling. The reactor core made of fuel assemblies is subjected to an axial water flow to cool the reactor. The flow modifies the dynamical behaviour of the fuel assemblies. Tests made on a real fuel assembly highlighted an added stiffness effect under axial flow. In previous studies simulations were compared to experiment involving by-passes significantly larger than the distance between two fuel assemblies in a PWR core. Thus, one could wonder if the observations made on a fuel assembly with large by-passes are representative of core geometry. Simulations using a fluid-structure model of the core to a seismic excitation have been proposed. A parametric study has been conducted to observe the effect of confinement on the added stiffness effect for several confinements and bulk velocities. Simulations showed that the added stiffness reaches a maximum for a confinement around 20 mm, and that the added stiffness should be negligible in a real core configuration.

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 397 ◽  
Author(s):  
Zihao Tian ◽  
Lixin Yang ◽  
Shuang Han ◽  
Xiaofei Yuan ◽  
Hongyan Lu ◽  
...  

In a previous study, several computational fluid dynamics (CFD) simulations of fuel assembly thermal-hydraulic problems were presented that contained fewer fuel rods, such as 3 × 3 and 5 × 5, due to limited computer capacity. However, a typical AFA-3G fuel assembly consists of 17 × 17 rods. The pressure drop levels and flow details in the whole fuel assembly, and even in the pressurized water reactor (PWR), are not available. Hence, an appropriate CFD method for a full-scale 17 × 17 fuel assembly was the focus of this study. The spacer grids with mixing vanes, springs, and dimples were considered. The polyhedral and extruded mesh was generated using Star-CCM+ software and the total mesh number was about 200 million. The axial and lateral velocity distribution in the sub-channels was investigated. The pressure distribution downstream of different spacer grids were also obtained. As a result, an appropriate method for full-scale rod bundle simulations was obtained. The CFD analysis of thermal-hydraulic problems in a reactor coolant system can be widely conducted by using real-size fuel assembly models.


2006 ◽  
Vol 326-328 ◽  
pp. 1603-1606 ◽  
Author(s):  
Sang Youn Jeon ◽  
Young Shin Lee

This study contains an estimation of the dynamic buckling load for the spacer grid of fuel assembly in pressurized water reactor. Three different estimation methods were proposed for the calculation of the dynamic buckling loads of spacer grid. The dynamic impact tests and analyses were performed to evaluate the impact characteristics of the spacer grids and to predict the dynamic buckling load of the full size spacer grid. The estimation results were compared with the test results for the verification of the estimation methods.


Author(s):  
Xu Duoting ◽  
Liu Tong ◽  
Huang Heng

Taking the large commercial pressurized water reactor and its mature fuel assembly as reference, this paper has analyzed economic performance of two accident tolerant fuel (ATF) designs based on once-through fuel cycle. The results show that the fuel cycle costs of both AT F designs have grown due to application of BeO powder, which is expensive. In order to reach the same electric cost as that of the referred fuel assembly, burn-up of these two AT F designs should be enhanced to 51323MWd/tU and 52054MWd/tU respectively.


Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinfeng Huang ◽  
Jiaming Jiang

Abstract For post-Fukushima nuclear power plants, there has been interested in accident-tolerant fuel (ATF) since it has better tolerant in the event of a severe accident. The fully ceramic microencapsulated (FCM) fuel is one kind of the ATF materials. In this study, the small modular pressurized water reactor (PWR) loading with FCM fuels was investigated, and the modified Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor (CANDLE) burnup strategy was successfully applied to such compact reactor core. To obtain ideal CANDLE shape, it’s necessary to set the infinity or enough length of the core height, but that is impossible for small compact core setting infinity or enough length of the core height. Due to the compact and finite core, the equilibrium state can only be maintained short periods and is not obvious, other than infinitely long active core to reach the long equilibrium state for ideal CANDLE. Consequently, the modified CANDLE shape would be presented. The approximate characteristics of CANDLE burnup are observed in the finite and compact core, and the power density and fuel burnup are selected as main characteristic of modified CANDLE burnup. In this study, firstly, lots of optimization schemes were discussed, and one of optimization schemes was chosen at last to demonstrate the modified CANDLE burnup strategy. Secondly, for chosen compact small rector core, the modified CANDLE burnup strategy is applied and presented. Consequently, the new characteristics of this reactor core can be discovered both in ignition region and in fertile region. The results show that application of CANDLE burnup strategy to small modular PWR loading with FCM fuels suppresses the excess reactivity effectively and reduces the risk of small PWR reactivity-induced accidents during the whole core life, which makes the reactor control more safety and simple.


Author(s):  
S. J. Shah ◽  
B. Brenneman ◽  
G. T. Williams ◽  
J. H. Strumpell

It has been established by other authors [1] that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect — the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to always reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers [2,3] that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than “ground”. The large flow-induced damping really acts in a relative reference frame rather than an absolute or inertial reference frame, and thus it becomes a flow-induced coupling between the fuel and baffles. This has a significant effect on the fuel assembly motions and tends to reduce the relative displacements and impact forces between fuel assemblies and baffle walls.


1982 ◽  
Vol 104 (3) ◽  
pp. 479-486 ◽  
Author(s):  
D. Bharathan ◽  
G. B. Wallis ◽  
H. J. Richter

One of the phenomena involved in a loss-of-coolant accident in a pressurized water reactor may be lower plenum voiding. This might occur during the blowdown phase after a cold-leg break in the primary coolant circuit. Steam generated in the reactor core may flow out of the bottom of the reactor core, turn in the lower plenum of the vessel, in a direction countercurrent to the emergency core coolant flow, and escape via the break. If its velocity is high enough, this steam may sweep water from the bottom (lower plenum) of the reactor vessel. Emergency coolant added to the vessel may also be carried out by the escaping steam and thus the reflooding of the core would be delayed. This paper describes a study of two-phase hydrodynamics associated with lower plenum voiding. Several geometrical configurations were tested at three different scales, using air to simulate the steam. Comparisons were made with data obtained by other researchers.


Author(s):  
Robert J. Fetterman

As the nuclear renaissance is now upon us and new plants are either under construction or being ordered, a considerable amount of attention has also turned to the design of the first fuel cycle. Requirements for core designs originate in the Utilities Requirements Document (URD) for the United States and the European Utilities Requirements (EUR) for Europe. First core designs created during the development of these documents were based on core design technology dating back to the 1970’s, where the first cycle core loading pattern placed the highest enrichment fuel on the core periphery and two other lower enrichments in the core interior. While this sort of core design provided acceptable performance, it underutilized the higher enriched fuel assemblies and tended to make transition to the first reload cycle challenging, especially considering that reload core designs are now almost entirely of the Low Leakage Loading Pattern (LLLP) design. The demands placed on today’s existing fleet of pressurized water reactors for improved fuel performance and economy are also desired for the upcoming Generation III+ fleet of plants. As a result of these demands, Westinghouse has developed an Advanced First Core (AFCPP) design for the initial cycle loading pattern. This loading pattern design simulates the reactivity distribution of an 18 month low leakage reload cycle design by placing the higher enriched assemblies in the core interior which results in improved uranium utilization for those fuel assemblies carried through the first and second reload cycles. Another feature of the advanced first core design is radial zoning of the high enriched assemblies, which allows these assemblies to be located in the core interior while still maintaining margin to peaking factor limits throughout the cycle. Finally, the advanced first core loading pattern also employs a variety of burnable absorber designs and lengths to yield radial and axial power distributions very similar to those found in typical low leakage reload cycle designs. This paper will describe each of these key features and demonstrate the operating margins of the AFC design and the ability of the AFC design to allow easy transition into 18 month low leakage reload cycles. The fuel economics of the AFC design will also be compared to those of a more traditional first core loading pattern.


Sign in / Sign up

Export Citation Format

Share Document