Optimization of Reactor’s Start-Up and Shutdown Procedures by Transient Thermo-Mechanical Finite Element Analysis

Author(s):  
Sang-Mo Lee ◽  
Ohgeon Kwon ◽  
Vitor Lopes Garcia

Efficient refinery start-up and shutdown durations are vital in establishing prolonged productivity in refineries operating hydrotreating reactors. The benefits of efficient start up and shutdown cycles are extensive, and include considerable operational and cost reduction. Reduced start-up and shutdown cycles, however, require increased heating and cooling rates, which cause higher temperature gradients throughout the reactor vessel, consequently leading to higher thermal stresses, which may affect damage mechanisms and limit reactor’s life. The equipment’s OEM has defined guidelines for the reactor heating and cooling during start-up and shutdown cycles and any attempt to reduce the start-up and shutdown duration is usually limited by these guidelines. It is therefore necessary to carry out an engineering assessment to determine the effect of changing the start-up and shutdown procedures beyond the OEM guidelines on reactor’s life. Multiple thermo-mechanical Finite Element analyses for a series of different start-up/ shutdown procedures, including the current procedure, were carried out to determine the through-wall thermal gradient and stresses, and identify the most critical locations. In order to estimate convective heat transfer coefficients, Computational Fluid Dynamic (CFD) analysis was utilized to describe the complex fluid flow behavior of the feedstock in the presence of catalysts and internal geometry features. Low Cycle Fatigue (LCF) was adopted as a main damage mechanism to quantify the damage as a result of the changed operating conditions. It was determined that the LCF life calculated in the reactor vessel’s critical damage locations was found to be sufficiently long with respect to the frequency of start/shutdown cycles, even with operating conditions exceeding the OEM limit. Therefore, alternative guidelines were suggested to achieve the time reduction in startup/shutdown operation by increasing ramp rates without compromising structural integrity of the vessel.

Author(s):  
Aun Ming Lim ◽  
Simon Yuen

The internals in the deaerators of a refinery plant were reported to have experienced a series of failures since their installation in 1985. These failures included development of cracks in the floor plates, damage of supports and breakage of fillet welds. Two possible root causes were initially identified; thermal stresses due to transient conditions and flow induced vibration. The former cause was classified as unlikely since the deaerators were always operating on steady-state conditions. No cyclic operating conditions were imposed on these deaerators. Vibrations however posed as the most likely root cause for the series of failures. The refinery plant inspectors reported that vibrations on the deaerators, although have not been measured, could be physically felt. These vibrations appear to be continuous and increase linearly with load. A finite element analysis was performed to determine the natural frequency of the deaerators. Mode shapes predicted from this calculation show that vibrations could have caused the failures of the internals. Furthermore, the lowest natural frequency of the deaerators appeared to fall within the actual vibration frequency on site (∼20 Hz). Although not confirmed, it is highly suspected that the vibration was excited by the flow (low pressure steam). Several repair options were explored to overcome this problem. These options were concentrated in increasing the stiffness of the steam inlet pipe and the deaerator floor. Finite element assessments demonstrated that the current flexible deaerator floor was the reason for the low natural frequency. An option of introducing reinforcement strips to the bottom side of the floor was identified as the best option to increase the natural frequency of the deaerator and this is expected to overcome the vibration problem. Only one vessel was assessed but the results apply to the other vessels since they are similar in design.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tae-Wook Kim ◽  
Seul-Kee Kim ◽  
Seong-Bo Park ◽  
Jae-Myung Lee

In 2012, the International Maritime Organization (IMO) regulated the emissions of SOx and NOx by setting the emission control area and strengthened the regulations on ship building and operation. Because the environmental regulations have been reinforced, there has been a drastic increase in LNG-fueled ships. Therefore, it is necessary to carry out systematic research on the design of the LNG fuel tank, which is one of the important components of LNG fuel supply systems. In this study, aiming to design a type-B LNG fuel tank used in the real structure, a procedure for structural integrity assessment considering the International Gas Carrier (IGC) Code was proposed. A 10,000 TEU containership was chosen as an operating vessel, and independent type-B tank was selected as an LNG fuel tank. Structural integrity was evaluated by applying a systematic procedure based on the IGC Code. A series of finite element analysis was conducted under the various design loads and operating conditions. Fatigue life and fatigue damage were calculated using the numerical results obtained from transient thermal-structural analysis and fatigue analysis to provide the safety level of the design scheme.


2019 ◽  
Vol 32 ◽  
pp. 15-26
Author(s):  
Alexandre Domingos Sarti Leme ◽  
Geraldo Creci ◽  
Edilson Rosa Barbosa de Jesus ◽  
Túlio César Rodrigues ◽  
João Carlos Menezes

Gas turbines are very important because they can be used in several areas, such as aeronautics and electric power generation systems. The operation of a gas turbine can be done by less pollutant fuels when compared to traditional kerosene, for example, resulting in less degradation to environment. Gas turbines may fail from a variety of sources, with the possibility of serious damage results. In this work, the structural integrity of the hot disc of an aeronautical gas turbine is addressed. Several numerical analyses have been performed by the finite element method: Temperature Distributions, Thermal Stresses and Dilatations, Structural Stresses and Deformations, Modal Behaviors and Fatigue Analysis. Creep of blades has also been considered. These are the most important failure modes that can happen to the studied hot disc under operating service. All these analysis have been performed considering the boundary conditions at the design point with maximum rotational speed. The mesh of the problem has been strictly evaluated by adaptive refinement of nodes and elements combined with a convergence analysis of results. Then, the material and basic properties of the hot disc have been defined to assure a normal operation free from failures. Therefore, the mechanical drawings of the studied hot turbine disc have been released for manufacturing and the construction of the first prototype of the aeronautical gas turbine is in testing phase showing that the results presented in this work are consistent.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2007 ◽  
Vol 23 ◽  
pp. 229-232
Author(s):  
Liliana Sandu ◽  
Nicolae Faur ◽  
Cristina Bortun ◽  
Sorin Porojan

Several studies evaluated the removable partial dentures by the finite element analysis, but none of them evaluated thermal stresses. The purpose of the study was to explore the influence of thermal oral changes induced by hot/cold liquids and food on the circumferential cast clasps of removable partial dentures. A 3-dimensional finite element method was used to explore the temperature distribution, thermal stress and the influence of thermal changes on stresses and displacements of circumferential clasps during functions. Thermal variations induce stresses in dental clasps, high temperatures having a more aggressive effect than lower one. Cold liquids and food induce high stresses in the retentive clasp arms while hot ones in the occlusal rests of the clasps and for the back action clasp also in the minor connector. The study suggests the importance of consFigureidering thermal variations for stress analyses of the cast clasps.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


2013 ◽  
Vol 823 ◽  
pp. 247-250
Author(s):  
Jie Dong ◽  
Wen Ming Cheng ◽  
Yang Zhi Ren ◽  
Yu Pu Wang

Because of the huge lifting weight and complex structure of large-tonnage gantry crane and in order to effectively design and review it, this paper aims to carry out a research on its structural performance based on the method of theoretical calculation and finite element analysis. During the early period of design, the method of theoretical calculations is adopted, and after specific design it comes the finite element analysis, so as to get the results of analysis under a variety of operating conditions, which illustrates that the structural design and review of large-tonnage gantry crane based on theoretical calculations and finite element are feasible, and also verifies that the method of finite element is an effective way to find a real dangerous cross-section, thus providing the basis for the design and manufacture of the crane structure.


1980 ◽  
Vol 102 (4) ◽  
pp. 430-432 ◽  
Author(s):  
R. D. Blevins

The elastic thermal stresses in a welded transition between two pipes of the same size but different alloys are explored. A stress-free temperature is postulated and the stress due to a uniform change in temperature is characterized by the maximum stress intensity in the weld. A simple expression for predicting this maximum stress intensity is developed based on the results of finite element analysis.


Author(s):  
Monika Topel ◽  
Björn Laumert ◽  
Åsa Nilsson ◽  
Markus Jöcker

Liberalized electricity market conditions and concentrating solar power technologies call for increased power plant operational flexibility. Concerning the steam turbine component, one key aspect of its flexibility is the capability for fast starts. In current practice, turbine start-up limitations are set by consideration of thermal stress and low cycle fatigue. However, the pursuit of faster starts raises the question whether other thermal phenomena can become a limiting factor to the start-up process. Differential expansion is one of such thermal properties, especially since the design of axial clearances is not included as part of start-up schedule design and because its measurement during operation is often limited or not a possibility at all. The aim of this work is to understand differential expansion behavior with respect to transient operation and to quantify the effect that such operation would have in the design and operation of axial clearances. This was accomplished through the use of a validated thermo-mechanical model that was used to compare differential expansion behavior for different operating conditions of the machine. These comparisons showed that faster starts do not necessarily imply that wider axial clearances are needed, which means that the thermal flexibility of the studied turbine is not limited by differential expansion. However, for particular locations it was also obtained that axial rubbing can indeed become a limiting factor in direct relation to start-up operation. The resulting approach presented in this work serves to avoid over-conservative limitations in both design and operation concerning axial clearances.


Sign in / Sign up

Export Citation Format

Share Document