Effect of High Pressure Gaseous Hydrogen on Fatigue Properties of SUS304 and SUS316 Austenitic Stainless Steel

Author(s):  
Takashi Iijima ◽  
Hirotoshi Enoki ◽  
Junichiro Yamabe ◽  
Bai An

A high pressure material testing system (max. pressure: 140 MPa, temperature range: −80 ∼ 90 °C) was developed to investigate the testing method of material compatibility for high pressure gaseous hydrogen. In this study, SSRT and fatigue life test of JIS SUS304 and SUS316 austenitic stainless steel were performed in high pressure gaseous hydrogen at room temperature, −45, and −80 °C. These testing results were compared with those in laboratory air atmosphere at the same test temperature range. The SSRT tests were performed at a strain rate of 5 × 10−5 s−1 in 105 MPa hydrogen gas, and nominal stress-strain curves were obtained. The 0.2% offset yield strength (Ys) did not show remarkable difference between in hydrogen gas and in laboratory air atmosphere for SUS304 and SUS316. Total elongation after fracture (El) in hydrogen gas at −45 and −80 °C were approximately 15 % for SUS304 and 20% for SUS316. In the case of fatigue life tests, a smooth surface round bar test specimen with a diameter of 7 mm was used at a frequency of 1, 0.1, and 0.01 Hz under stress rate of R = −1 (tension-compression) in 100 MPa hydrogen gas. It can be seen that the fatigue life test results of SUS304 and SUS316 showed same tendency. The fatigue limit at room temperature in 100 MPa hydrogen gas was comparable with that in laboratory air. The room temperature fatigue life in high pressure hydrogen gas appeared to be the more severe condition compared to the fatigue life at low temperature. The normalized stress amplitude (σa / Ts) at the fatigue limit was 0.37 to 0.39 for SUS304 and SUS316 austenitic stainless steels, respectively.

Author(s):  
Un Bong Baek ◽  
Thanh Tuan Nguyen ◽  
Seung Hoon Nahm ◽  
Kwon Sang Ryu

Abstract The susceptibility of 316L-type austenite stainless steel to hydrogen was quantified by means of SSRT results and low-cycle fatigue life measurement. Both tests were conducted in the air condition after being charged with high-pressure hydrogen gas of 10 MPa and a temperature of 300°C for 120 hours. In addition, SSRT tests in gaseous hydrogen at a pressure of 10 MPa were also performed and compared to the tests conducted in hydrogen pre-charged and as-received conditions. The 0.2% yield strength and tensile strength did not show there to be a considerable difference between hydrogen pre-charging and the as-received conditions, whereas the gaseous hydrogen condition revealed a remarkable degradation in tensile properties, especially in terms of fracture elongation. In the case of fatigue life test, a considerable influence of hydrogen pre-charging in fatigue life properties was observed in the high strain amplitude regime whereas the measured values in the low strain deformation region are consistently comparable to that in the as-received condition. Fatigue limit was not affected by hydrogen pre-charging.


2016 ◽  
Vol 838-839 ◽  
pp. 398-403 ◽  
Author(s):  
Marina Tikhonova ◽  
Nariman Enikeev ◽  
Ruslan Z. Valiev ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The formation of submicrocrystalline structure during severe plastic deformation and its effect on mechanical properties of an S304H austenitic stainless steel with chemical composition of Fe – 0.1C – 0.12N – 0.1Si – 0.95Mn – 18.4Cr – 7.85Ni – 3.2Cu – 0.5Nb – 0.01P – 0.006S (all in mass%) were studied. The severe plastic deformation was carried out by high pressure torsion (HPT) at two different temperatures, i.e., room temperature or 400°C. HPT at room temperature or 400°C led to the formation of a fully austenitic submicrocrystalline structure. The grain size and strength of the steels with ultrafine-grained structures produced by cold or warm HPT were almost the same. The ultimate tensile strengths were 1950 MPa and 1828 MPa after HPT at room temperature and 400°C, respectively.


Author(s):  
Yoshinori Sawae ◽  
Kanao Fukuda ◽  
Eiichi Miyakoshi ◽  
Shunichiro Doi ◽  
Hideki Watanabe ◽  
...  

Bearings and seals used in fuel cell vehicles and related hydrogen infrastructures are operating in pressurized gaseous hydrogen. However, there is a paucity of available data about the friction and wear behavior of materials in high pressure hydrogen gas. In this study, authors developed a pin-on-disk type apparatus enclosed in a high pressure vessel and characterized tribological behavior of polymeric sealing materials, such as polytetrafluoroethylene (PTFE) based composites, in gaseous hydrogen pressurized up to 40 MPa. As a result, the friction coefficient between graphite filled PTFE and austenitic stainless steel in 40 MPa hydrogen gas became lower compared with the friction in helium gas at the same pressure. The chemical composition of worn surfaces was analyzed by using X-ray photoelectron spectrometer (XPS) after the wear test. Results of the chemical analysis indicated that there were several differences in chemical compositions of polymer transfer film formed on the stainless disk surface between high pressure hydrogen environment and high pressure helium environment. In addition, the reduction of surface oxide layer of stainless steel was more significant in high pressure hydrogen gas. These particular effects of the pressurized hydrogen gas on the chemical condition of sliding surfaces might be responsible for the tribological characteristics in the high pressure hydrogen environment.


Author(s):  
Tomohiko Omura ◽  
Mitsuo Miyahara ◽  
Hiroyuki Semba ◽  
Masaaki Igarashi ◽  
Hiroyuki Hirata

Hydrogen environment embrittlement (HEE) susceptibility in high pressure gaseous hydrogen was investigated on 300 series austenitic stainless steels and A6061-T6 aluminum alloy. Tensile properties of these materials were evaluated by Slow Strain Rate Testing (SSRT) in gaseous hydrogen pressurized up to 90MPa (13053 psig) in the temperature range from −40 to 85 degrees C (−40 to 185 degrees F). HEE susceptibilities of austenitic stainless steels strongly depended upon the chemical compositions and testing temperatures. A6061-T6 aluminum alloy showed no degradation by hydrogen. Fatigue properties in high pressure gaseous hydrogen were evaluated by the external cyclic pressurization test using tubular specimens. The tubular specimen was filled with high pressure hydrogen gas, and the outside of the specimen was cyclically pressurized with water. Type 304 showed a decrease in the fatigue life in hydrogen gas, while as for type 316L and A6061-T6 the difference of the fatigue life between hydrogen and argon environments was small. HEE susceptibility of investigated materials was discussed based on the stability of an austenitic structure.


Author(s):  
Shinichi Ohmiya ◽  
Hideki Fujii

Safety of on-board high-pressure hydrogen fuel tanks and piping systems in hydrogen refueling station is one of the most important subjects for upcoming hydrogen society featured by fuel cell vehicles. Type 316L austenitic stainless steel is known as a material in which the effect of hydrogen on mechanical properties is very small, so JIS SUS316L is recognized as the standard material for 35MPa type on-board fuel tank liner in the Japanese standard JARI-S001. However, solution treated 316L does not always have sufficient 0.2% proof stress, and materials having higher proof stress are strongly needed. One of the solutions is work-hardening of the material, which is conventionally used for piping systems for high pressure gas facilities. In this study, the effect of hydrogen on mechanical properties of 40% cold worked 316L in high-pressure gaseous hydrogen at 45MPa was investigated. Results are as follows: Any significant effect of hydrogen was not recognized in tensile tests using round bar type specimens at room temperature and 85°C. In axial fatigue life tests using sand glass type specimens (stress ratio R = −1) at room temperature, not so large difference was observed on S-N curves in air and in high pressure hydrogen. However, a little influence was observed in fatigue crack growth tests using half inch CT specimens at room temperature (R = 0.05). Microstructure observation reveals that any martensitic transformation did not occur. The degradation of fatigue crack growth rate in high pressure gaseous hydrogen is probably caused by the work hardened δ-ferrite which is generally contained in thick materials. However the effect of hydrogen is only limited and 40% cold worked type 316L stainless steel is considered to be used in high pressure hydrogen gas just like solution treated one.


Author(s):  
Takashi Iijima ◽  
Hirotoshi Enoki ◽  
Junichiro Yamabe ◽  
Mitsuo Kimura ◽  
Bai An

Abstract SSRT and fatigue life tests of SUS301 austenitic stainless steel were performed to examine the effect of hydrogen on the mechanical properties. Ni content of SUS301, 6.00–8.00 mass%, is lower than that of SUS304 in JIS standard for austenitic stainless steels. In the case of SSRT tests, specimens with and without hydrogen charging were tested in laboratory air at room temperature (R.T.), −45 °C, and −80 °C. The 0.2% offset yield strength (Ys) of the hydrogen charged specimens was less than 300 MPa in the tested temperature range. The tensile strength (Ts) and total elongation (El) of hydrogen charged specimens decreased remarkably. With decreasing testing temperature, fracture surface facet of the hydrogen charged specimens became dominant. Therefore, the effect of hydrogen on the tensile properties of SUS301 is supposed to be large. Specimens with and without hydrogen charging were fatigued in laboratory air at R.T., and specimens without hydrogen charging were fatigued in 100 MPa hydrogen gas atmosphere at R.T. Number of cycles (Nf) at finite fatigue life region of the hydrogen charged specimens and of the specimens tested in hydrogen gas were two orders shorter than that of the specimens tested in air. However, the finite fatigue life region of the hydrogen charged specimens and the specimens tested in hydrogen gas showed a different profile. Additionally, ferrite equivalents of all fatigue tested specimens and fatigued fracture surface morphology suggested the fatigue fracture mechanism between the hydrogen charged specimens tested in air and the non-charged specimens tested in 100 MPa hydrogen gas seems to be different. Therefore, further investigations are required to clear this difference.


Author(s):  
Qi He ◽  
Zhengli Hua ◽  
Jinyang Zheng

Austenitic stainless steel of the 300 series and their welds are widely employed in the production, storage and distribution infrastructures of gaseous and liquid hydrogen. However, hydrogen compatibility of their welds has not been completely understood, especially in high-pressure hydrogen environment. In this study, the influence of 98MPa high pressure gaseous hydrogen on the tensile properties and fracture behaviors of three kinds of S31603 weld joints were investigated, including SMAW, SAW and TIG welds. The tensile data indicated that hydrogen caused the ductility loss of the SAW and TIG weld joints, particularly for the TIG welds. For the SMAW weld joints, hydrogen had little impact on its ductility. Fractographic analysis revealed that hydrogen scarcely induced a change in the fracture mode of the SMAW welds. Different from this, the SAW and TIG welds were found to exhibit an obvious susceptibility to hydrogen embrittlement in this study, particularly for the TIG welds, based on the change of fracture features from dimples to facets, striations and secondary cracks. Additionally, both fracture surfaces of the SMAW and SAW welds contained some inclusions where the secondary cracks were promoted.


Sign in / Sign up

Export Citation Format

Share Document