Variable Loading Sequence Effect for Thermal Fatigue at a Mixing Tee

Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract Mixing flow causes fluctuations in fluid temperature near the pipe wall and may result in fatigue crack initiation. In a previous study, the authors reported the characteristics of the thermal stress to cause thermal fatigue at a mixing tee. A large stress fluctuation was caused by movement of the hot spot, at which the pipe wall was heated by hot flow from the branch pipe. According to a general procedure, fatigue damage is calculated by the linear damage accumulation rule. However, it has been reported that Miner’s rule does not always predict the fatigue life conservatively for variable stress amplitude. In this study, we investigated the change in fatigue life due to variable strain around the hot spot. The time histories of the strain around the hot spot were estimated by finite element analysis (FEA) for which the temperature condition was determined by wall temperature measured in a mock-up test. Strain-controlled fatigue tests were conducted using smooth cylindrical specimens made of stainless steel. The fatigue damage at failure of the specimen was calculated using Miner’s rule. The calculated fatigue damage around the hot spot became less than unity and the minimum value was 0.18. Therefore, Miner’s rule predicted non-conservative fatigue life. In addition, the calculated fatigue damage inside the hot spot was larger than those outside the hot spot and at the position of maximum stress fluctuation. Fatigue tests using strain with periodic overload were also conducted in order to investigate the effect of the loading history on fatigue life. It was shown that the strain with periodic overload reduced the fatigue life. The calculated fatigue damage for the strain at the maximum position of stress fluctuation range seemed to be smaller than those at other positions. This implies that the fatigue life can be estimated conservatively from the viewpoint of the loading sequence effect by calculating the fatigue damage using Miner’s rule for the strain at the maximum position of stress fluctuation range.

Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract Mixing flow causes fluctuations in fluid temperature near a pipe wall and may result in fatigue crack initiation. Movement of the hot spot, at which the pipe inner surface was heated by hot flow from the branch pipe, causes thermal stress fluctuations. In this study, the effect of the loading sequence on thermal fatigue in a mixing tee was investigated. In addition, the prediction method of the fatigue life for the variable thermal strain in the mixing tee was discussed. The time histories of the strain around the hot spot were estimated by finite element analysis for which the temperature condition was determined by wall temperature measured in a mock-up test. The accumulated fatigue damage around the hot spot obtained by Miner's rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. Crack growth tests showed that a single overload decreased crack opening strain and increased the effective strain range. The increment of the effective strain range accelerated the crack growth rate after the overload. The accumulated fatigue damage for the strain in the mixing tee was calculated using Miner's rule and the strain ranges which added the maximum increment of the effective strain range. The accumulated fatigue damage was larger than 1.0 under most conditions. The proposed procedure is suitable to predict the conservative fatigue life in a mixing tee.


Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract Mixing flow causes fluid temperature fluctuations near the pipe walls and may result in fatigue crack initiation. The authors have previously reported the loading sequence effect on thermal fatigue in a mixing tee. The fatigue damage around the hot spot, which was heated by the hot jet flow from the branch pipe, obtained by Miner’s rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. In this study, the effect of a single overload on the fatigue crack growth rate was investigated in order to clarify the reduction of the fatigue life at the mixing tee due to strain with periodic overload. In addition, the prediction method of the fatigue life for the variable thermal strain at the mixing tee was discussed. It was shown the crack growth rate increased after an overload for both cases of tensile and compressive overloads. The effective strain amplitude increased after the application of a single overload. The fatigue life curve was modified by considering the increment of the effective strain range. The fatigue damage recalculated using the modified fatigue life curve was larger than 1.0 except in a few cases. The fatigue life could be assessed conservatively for variable strain at the mixing tee using the developed fatigue curve and Miner’s rule.


Author(s):  
A. Fissolo ◽  
J. M. Stelmaszyk

In order to estimate the crack initiation damage, and also the water leakage conditions on PWR pipes, uniaxial fatigue curves are often used. They were deduced from strain or stress load control tests using normalised cylindrical specimens. However, severe thermo-mechanical loading fluctuations are observed in operating conditions. Components may also be submitted to transient loadings. The purpose of the present work is to start investigation on the fatigue life with a variable loading, in order to examine cumulative damage effect in fatigue. In this frame, multilevel strain controlled fatigue tests have been performed on a Type 304-L stainless steel (elaborated in accordance with the RCC-M specifications). The experimental results show that linear Miner’s rule is not verified in our conditions. When the strains are applied in a decreasing order (High-Low strain sequence), the summation of cycle ratios is smaller than unity, whatever the number of applied levels, whereas this summation is higher than one for an increasing order (Low-High strain sequence). A loading sequence effect is clearly evidenced. Different cumulative fatigue damage theories, proposed in literature, have been also tested. Some of them have been given better estimation than the Miner’s rule. That is the case of the so-called “Hybrid Theory” proposed and tested before by Bui Quoc on a Type 304-L steel. Extension of a model proposed by S. Taheri would seem also promising. At this stage, final conclusion cannot be yet deduced, additional investigations are needed.


2000 ◽  
Vol 28 (3) ◽  
pp. 196-208 ◽  
Author(s):  
C. Sun ◽  
A. Gent ◽  
P. Marteny

Abstract Miner's rule is often assumed to hold in accelerated fatigue tests. This rule implies that the order in which loads are applied is not significant. Whether particular loads are applied early in the test or later is unimportant; they are expected to cause the same amount of damage if they are imposed for the same number of cycles. In order to test this hypothesis, we have investigated the effect of loading sequence on residual strength using two levels of tensile strain and several representative rubber compounds. In all cases, a series of increasing strains was found to reduce the strength to a greater degree than the same strains applied in decreasing order. Thus, Miner's rule does not hold for the fatigue failure of these compounds. However, the relative rankings of the compounds remained the same in both step-up and step-down strain sequences.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


1992 ◽  
Vol 114 (3) ◽  
pp. 205-211 ◽  
Author(s):  
A. Ertas ◽  
G. Mustafa ◽  
O. Cuvalci

It is well known that the upper ball joint in a marine riser, in deep drilling, can cause fatigue damage in the drill pipe passing through it. A study of fracture mechanics and S–N curve approaches has been undertaken to determine the dynamic fatigue damage in the drill pipe. Miner’s rule is utilized in both methods to determine the total damage. The results of both methods are compared.


Author(s):  
Y.-H. Zhang ◽  
S. J. Maddox

In the fatigue design of steel catenary risers there are concerns regarding the fatigue damage to girth welds from low stresses, below the constant amplitude fatigue limit, in the loading spectrum and the validity of Miner’s cumulative damage rule. In both cases there is increasing evidence that current design methods can be non-conservative. These fundamental issues were addressed in a recent JIP. A key feature was development of the resonance fatigue testing rigs to enable them to test full-scale pipes under variable amplitude loading. Such tests were performed under a loading spectrum representative of that experienced by some risers, with many tests lasting over 100 million cycles to investigate the fatigue damage due to small stresses as well as the validity of Miner’s rule. However, the resonance rigs are only capable of producing spectrum loading by gradually increasing or decreasing the applied load, whereas more ‘spiky’ random load sequences may be relevant in practice. Therefore the programme also included fatigue tests in conventional testing machines on strip specimens cut from pipes to compare the two types of loading sequence. This paper presents the results of these tests, conclusions drawn and recommendations for changes to current fatigue design guidance for girth welded pipes regarding the definition of the fatigue limit, allowance for the damaging effect of low stresses and the validity of Miner’s rule.


1981 ◽  
Vol 103 (2) ◽  
pp. 112-117 ◽  
Author(s):  
S. E. J. Johnsen ◽  
M. Doner

A Monte Carlo simulation model of the classical Miner’s rule for cumulative fatigue damage is devised and implemented for an example of three summands. Results from the simulation are compared with Miner’s rule. The concept of damage-sum-to-failure is developed and applied to measured values of INCO 901 at room temperature.


2008 ◽  
Vol 378-379 ◽  
pp. 3-16
Author(s):  
Henning Agerskov

Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from Miner’s rule will depend on the distribution of the load history in tension and compression.


2017 ◽  
Vol 11 (41) ◽  
pp. 98-105 ◽  
Author(s):  
Marco Antonio Meggiolaro ◽  
Jaime Tupiassú Pinho de Castro ◽  
Samuel Elias Ferreira ◽  
Hao Wu

Sign in / Sign up

Export Citation Format

Share Document