High Temperature Hydrogen Attack: New NDE Advanced Capabilities — Development and Feedback

Author(s):  
Charles Le Nevé ◽  
Sophie Loyan ◽  
Léonard Le Jeune ◽  
Steve Mahaut ◽  
Serge Demonte ◽  
...  

Abstract In petroleum industry, hydrogen is used in many assets. With temperature and pressure, hydrogen can damage materials. This damage is called High Temperature Hydrogen Attack (HTHA) and is a time dependent degradation mechanism that can affect the integrity of steels used for pressure containment operating above about 400°F (204°C). HTHA has caused major accidents in Petroleum Industry. API RP 941 [1] currently provides guidance for steel selection (and so susceptibility to attack) in relation to temperature and ppH2 via Nelson curves. In the last edition, 4 stages of degradation for both base metal and weld metal are described. In the past, only stage III was detectable by the combination of different Ultrasonic methods which were known as AUBT – Advanced Ultrasonic Backscatter Technique. But, capability of detection was limited to defects above 500–1000μm, correspondent to small fissures. So, it was impossible to detect early stage of degradation as steel grain size (around 50μm). For several years, performances of non-destructive techniques have rapidly increased and new advanced ultrasonic technologies are available such as: - Phased Array Ultrasonic Techniques (PAUT) - Time Of Flight Diffraction (TOFD) - Total Focusing Method (TFM) This paper describes latest techniques and results obtained by Total and French Welding Institute in laboratory, and discuss the efficiency of the methods, over real HTHA degradation blocks. An overview of TFM is also proposed by CEA who work on innovating development to increase the performance of this technique.

Author(s):  
Phillip E. Prueter ◽  
Ryan Jones ◽  
Jacki Hess ◽  
Joel DeLuca

Abstract High-temperature hydrogen attack (HTHA) is a damage mechanism that can detrimentally affect the service life of carbon steel and low-chrome pressure equipment in the petroleum refining and related industries. HTHA involves the diffusion of hydrogen into steel, where it chemically reacts with free carbon at high temperatures to produce methane. This methane then gets trapped inside small cavities and other material defects. Over time, the rising methane pressure in these cavities can cause damage at the material grain boundaries. To this end, long-term exposure to high-temperature hydrogen environments can lead to volumetric damage that can diminish the load carrying capability of pressure equipment and accelerate the propagation of crack-like flaws. There have been several known industry failures attributed to HTHA damage as well. This paper summarizes a case study of a detailed analytical evaluation of potential HTHA damage in a vintage C-0.5Mo hydrotreater reactor. The goal of this study is to quantify the severity of HTHA damage using methods developed as part of an ongoing, multi-year Joint Industry Project (JIP) to justify continued operation of the reactor until the earliest practical replacement opportunity. HTHA damage and crack growth predictions are carried out based on documented historical operating conditions. Additionally, sensitivity in predicted remaining life to anticipated future operating temperatures is considered. Furthermore, based on state-of-the-art non-destructive examination (NDE) methods, fracture mechanics-based minimum pressurization temperature (MPT) envelopes are generated to help guide start-up and shut-down procedures that mitigate the risk for brittle fracture. Practical recommendations are also provided to facilitate the interpretation of NDE findings and to implement on-going failure mitigation and risk management strategies, including the development of Integrity Operating Windows (IOWs), for the reactor until planned replacement.


2020 ◽  
pp. 1223-1238
Author(s):  
Mark G. Lozev ◽  
G.A. Neau ◽  
L. Yu ◽  
T.J. Eason ◽  
S.E. Orwig ◽  
...  

The ability to measure early-stage high-temperature hydrogen attack (HTHA) has been improved by the use of optimized ultrasonic array probes and techniques. First, ultrasonic modeling and simulations were performed to design a set of array probes. The data was then collected using phased array ultrasonic testing (PAUT) and full matrix capture (FMC) techniques. Damage visualization, characterization, and sizing was completed with PAUT, total focusing method (TFM), and adaptive total focusing method (ATFM) advanced algorithms. The detection and sizing capabilities were initially validated on steel calibration samples with micromachined defects and synthetic HTHA damage. Vessels with suspected HTHA damage were removed from service, inspected with multiple array techniques, and then destructively evaluated for a results comparison with metallographic images. This study concluded that the FMC/TFM/ATFM techniques and algorithms improve detectability, characterization, and sizing of early-stage HTHA damage as compared to PAUT.


Author(s):  
Brian E. Shannon ◽  
Carl E. Jaske ◽  
Gustavo Miranda

Statoil Tjelbergodden operates a 2,400 ton/day methanol plant in Norway. In order to assess the condition and reliability of high temperature components within the reformer, a series of advanced non-destructive examination (NDE) technologies were applied to radiant catalyst tubes, outlet pigtails, and outlet collection headers. The inspection techniques were selected and developed to provide data that could easily be used in the engineering assessment of the high-temperature components. Special focus was given to detecting and quantifying high-temperature creep damage. This paper describes the NDE techniques that were employed and provides examples of typical data obtained by using the techniques. Catalyst tubes were inspected using the H SCAN® (Figure 1) multiple sensor technology. This technique utilizes two types of ultrasonic sensors, eddy current sensors, laser measurements, and elevation location sensors in scanning each catalyst tube. The H SCAN® P-CAT™ (Figure 2) technique is applied to outlet pigtails, while the H SCAN® H-CAT™ (Figure 3) technique is applied to outlet headers.


Author(s):  
Meng Lu ◽  
Yiqiang Chen ◽  
Min Liao ◽  
Chang Liu ◽  
Shuaizhi Zheng ◽  
...  

2021 ◽  
Author(s):  
Xuemei Cheng ◽  
Shuyun Cao

<p>Within orogenic zone and continental extensional area, it often developed metamorphic complex or metamorphic gneiss dome that widely exposed continental mid-lower crustal rocks, which is an ideal place to study exhumation processes of deep-seated metamorphic complex and rheology. The Yuanmou metamorphic complex is located in the south-central part of the "Kangdian Axis" in the western margin of Qiangtang Block and Yangtze Block, which is a part of the anticline of the Sichuan-Yunnan platform. Many research works mainly focus on the discussion of intrusion ages, aeromagnetic anomalies, and polymetallic deposits. However, the exhumation process and mechanism of the Yuanmou metamorphic complex are rarely discussed and still unclear. This study, based on detailed field geological observations, optical microscopy (OM), cathodoluminescence (CL), electron backscatter diffraction (EBSD) and electron probe (EMPA) were performed to illustrate the geological structure features, deformation-metamorphic evolution process and its tectonic significance of Yuanmou metamorphic complex during the exhumation process. All these analysis results indicate that the Yuanmou metamorphic complex generally exhibits a dome structure with deep metamorphic rocks and deformed rocks of varying degrees widely developed. Mylonitic gneiss and granitic intrusions are located in the footwall of the Yuanmou, which have suffered high-temperature shearing. The mylonitic fabrics and mineral stretching lineations in the deformed rock are strongly developed, forming typical S-L or L-shaped structural features. The high-temperature ductile deformation-metamorphism environment is high amphibolite facies, that is, the temperature range is between 620 ~ 690 ℃ and the pressure is between 0.8 ~ 0.95 Gpa. In the deformed rocks closed to the detachment fault, some of the mylonite fabric features are retained, but most of them have experienced a strongly overprinted retrogression metamorphism and deformation. At the top of the detachment fault zone, it is mainly composed of cataclasites and fault gouge. The comprehensive macro- and microstructural characteristics, geometry, kinematics, and mineral (amphibole, quartz and calcite) EBSD textures indicate that the Yuanmou metamorphic complex has undergone a progressive exhumation process during regional extension, obvious high-temperature plastic deformation-metamorphism in the early stage, and superimposed of low-temperature plastic-brittle and brittle deformation in the subsequent stage, which is also accompanied by strong fluid activities during the exhumation process.</p>


Author(s):  
Jia Qianqian ◽  
Guo Chao ◽  
Li Jianghai ◽  
Qu Ronghong

The nuclear power plant with two modular high-temperature gas-cooled reactors (HTR-PM) is under construction now. The control room of HTR-PM is designed. This paper introduces the alarm displays in the control room, and describes some verification and validation (V&V) activities of the alarm system, especially verification for some new human factor issues of the alarm system in the two modular design. In HTR-PM, besides the regular V&V similar to other NPPs, the interference effect of the alarm rings of the two reactor modules at the same time, and the potential discomfort of the two reactor operators after shift between them are focused. Verifications at early stage of the two issues are carried on the verification platform of the control room before the integrated system validation (ISV), and all the human machine interfaces (HMIs) in the control room, including the alarm system are validated in ISV. The test results on the verification platform show that the alarm displays and rings can support the operators understand the alarm information without confusion of the two reactors, and the shift between the two reactor operators have no adverse impact on operation. The results in ISV also show that the alarm system can support the operators well.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 398
Author(s):  
Chihao Liu ◽  
Jiajian Chen

At present, the research on the high temperature degradation of concrete usually focuses on only the degradation of concrete itself without considering the effect of the plastering layer. It is necessary to take into account the influence of the plastering layer on the high temperature degradation of concrete. With an increase in the water/cement ratio, the explosion of concrete disappeared. Although increasing the water/cement ratio can alleviate the cracking of concrete due to lower pressure, it leads to a decrease in the mechanical properties of concrete after heating. It is proved that besides the water/cement ratio, the apparent phenomena and mechanical properties of concrete at high temperature can be affected by the plastering layer. The plastering layer can relieve the high temperature cracking of concrete, and even inhibit the high temperature explosion of concrete with 0.30 water/cement ratio. By means of an XRD test, scanning electron microscope test and thermogravimetric analysis, it is found that the plastering layer can promote the rehydration of unhydrated cement particles of 0.30 water/cement ratio concrete at high temperature and then promote the mechanical properties of concrete at 400 °C. However, the plastering layer accelerated the thermal decomposition of C-S-H gel of concrete with a water/cement ratio of 0.40 at high temperature, and finally accelerate the decline of mechanical property of concrete. To conclude, the low water/cement ratio and plastering layer can delay the deterioration of concrete at high temperature.


Sign in / Sign up

Export Citation Format

Share Document