Structural deformation-metamorphism and exhumation processes of Yuanmou metamorphic complex, Yunnan, China

Author(s):  
Xuemei Cheng ◽  
Shuyun Cao

<p>Within orogenic zone and continental extensional area, it often developed metamorphic complex or metamorphic gneiss dome that widely exposed continental mid-lower crustal rocks, which is an ideal place to study exhumation processes of deep-seated metamorphic complex and rheology. The Yuanmou metamorphic complex is located in the south-central part of the "Kangdian Axis" in the western margin of Qiangtang Block and Yangtze Block, which is a part of the anticline of the Sichuan-Yunnan platform. Many research works mainly focus on the discussion of intrusion ages, aeromagnetic anomalies, and polymetallic deposits. However, the exhumation process and mechanism of the Yuanmou metamorphic complex are rarely discussed and still unclear. This study, based on detailed field geological observations, optical microscopy (OM), cathodoluminescence (CL), electron backscatter diffraction (EBSD) and electron probe (EMPA) were performed to illustrate the geological structure features, deformation-metamorphic evolution process and its tectonic significance of Yuanmou metamorphic complex during the exhumation process. All these analysis results indicate that the Yuanmou metamorphic complex generally exhibits a dome structure with deep metamorphic rocks and deformed rocks of varying degrees widely developed. Mylonitic gneiss and granitic intrusions are located in the footwall of the Yuanmou, which have suffered high-temperature shearing. The mylonitic fabrics and mineral stretching lineations in the deformed rock are strongly developed, forming typical S-L or L-shaped structural features. The high-temperature ductile deformation-metamorphism environment is high amphibolite facies, that is, the temperature range is between 620 ~ 690 ℃ and the pressure is between 0.8 ~ 0.95 Gpa. In the deformed rocks closed to the detachment fault, some of the mylonite fabric features are retained, but most of them have experienced a strongly overprinted retrogression metamorphism and deformation. At the top of the detachment fault zone, it is mainly composed of cataclasites and fault gouge. The comprehensive macro- and microstructural characteristics, geometry, kinematics, and mineral (amphibole, quartz and calcite) EBSD textures indicate that the Yuanmou metamorphic complex has undergone a progressive exhumation process during regional extension, obvious high-temperature plastic deformation-metamorphism in the early stage, and superimposed of low-temperature plastic-brittle and brittle deformation in the subsequent stage, which is also accompanied by strong fluid activities during the exhumation process.</p>

2015 ◽  
Vol 52 (12) ◽  
pp. 1182-1190 ◽  
Author(s):  
Amanda Labrado ◽  
Terry L. Pavlis ◽  
Jeffrey M. Amato ◽  
Erik M. Day

A complex array of faulted arc rocks and variably metamorphosed forearc accretionary complex rocks form a mappable arc–forearc boundary in southern Alaska known as the Border Ranges fault (BRF). We use detrital U–Pb zircon dating of metasedimentary rocks within the Knik River terrane in the western Chugach Mountains to show that a belt of Early Cretaceous amphibolite-facies metamorphic rocks along the BRF was formed when older mélange rocks of the Chugach accretionary complex were reworked in a sinistral-oblique thrust reactivation of the BRF during a period of forearc plutonism. The metamorphic subterrane of the Knik River terrane has a maximum depositional age (MDA) of 156.5 ± 1.5 Ma and a detrital zircon age spectrum that is indistinguishable from the Potter Creek assemblage of the Chugach accretionary complex, supporting correlation of these units. These ages contrast strongly with new and existing data that show Triassic to earliest Jurassic detrital zircon ages from metamorphic screens in the plutonic subterrane of the Knik River terrane, a fragmented Early Jurassic plutonic assemblage generally interpreted as the basement of the Peninsular terrane. Based on these findings, we propose the following new terminology for the Knik River terrane: (1) “Carpenter Creek metamorphic complex” for the Early Cretaceous “metamorphic subterrane”, (2) “western Chugach trondhjemite suite” for the Early Cretaceous forearc plutons within the belt, (3) “Friday Creek assemblage” for a transitional mélange unit that contains blocks of the Carpenter Creek complex in a chert–argillite matrix, and (4) “Knik River metamorphic complex” in reference to metamorphic rocks engulfed by Early Jurassic plutons of the Peninsular terrane that represent the roots of the Talkeetna arc. The correlation of the Carpenter Creek metamorphic complex with the Chugach mélange indicates that the trace of the BRF lies ∼1–5 km north of the map trace shown on geologic maps, although, like other segments of the BRF, this boundary is blurred by local complexities within the BRF system. Ductile deformation of the mélange is sufficiently intense that few vestiges of its original mélange fabric exist, suggesting the scarcity of rocks described as mélange in the cores of many orogens may result from misidentification of rocks that have been intensely overprinted by younger, ductile deformation.


1990 ◽  
Vol 27 (12) ◽  
pp. 1651-1671 ◽  
Author(s):  
P. Marquis ◽  
C. Hubert ◽  
A. C. Brown ◽  
D. M. Rigg

The Dumagami Au–Ag–Cu deposits are hosted by strongly deformed and altered Archean felsic metavolcanites of the Blake River Group (BRG), southern Abitibi greenstone belt, Canada. Textural and structural features recorded within the lithologies of the BRG at Dumagami indicate that two stages of hydrothermal alteration, separated by a dynamometamorphic event, have affected the volcanic protoliths in the deposit area. Advanced argillic and sericitic alteration zones, massive pyrite bodies, and massive sphalerite–galena bodies resulted from the first stage of hydrothermal activity. Sericitic shells surround peraluminous cores, which host the massive pyrite bodies and massive sphalerite–galena bodies within the altered zones.This early-stage alteration was followed by a dynamometamorphic event that reached the greenschist–amphibolite grade and almost completely recrystallized both fresh and altered rocks and the enclosed massive sulphide bodies. White-mica schists and andalusite–kyanite schists represent the dynamometamorphic equivalents of the earlier sericitic and advanced argillic zones. Mesoscopic and microscopic structures and textures attest to the ductile behaviour of the massive pyrite bodies during this deformation and accompanying metamorphism.Portions of the deformed and metamorphosed altered zones are characterized by a late cataclastic deformation and by the development of fractures postdating the ductile deformation. The late hydrothermal alteration is concentrated within these cataclastic rocks and is characterized by the retrogression of the greenschist–amphibolite assemblages. Andalusite and kyanite are replaced by diaspore, kaolinite, and pyrophyllite assemblages, and pyrite is replaced by chalcopyrite–gold, chalcopyrite–bornite–gold, and bornite–stromeyerite assemblages. The concentration of the pre-dynamometamorphic alteration and sulphide mineralization within a narrow band along the southern BRG could indicate that this part of the BRG was the locus of a major Archean synvolcanic fault zone.


2013 ◽  
Vol 197 ◽  
pp. 191-197 ◽  
Author(s):  
Alexey A. Markov ◽  
Elizaveta V. Shalaeva ◽  
Alexander P. Tyutyunnik ◽  
Vasily V. Kuchin ◽  
Mikhail V. Patrakeev ◽  
...  

1977 ◽  
Vol 14 (11) ◽  
pp. 2578-2592 ◽  
Author(s):  
J. W. Hillhouse

Paleomagnetic evidence indicates that the extensive early Mesozoic basalt field near McCarthy, south-central Alaska, originated far south of its present position relative to North America. Results obtained from the Middle and (or) Upper Triassic Nikolai Greenstone suggest that those basalts originated within 15° of the paleoequator. This position is at least 27° (3000 km) south of the Upper Triassic latitude predicted for McCarthy on the basis of paleomagnetic data from continental North America. The Nikolai pole, as determined from 50 flows sampled at 5 sites, is at 2.2° N, 146.1° E (α95 = 4.8°). The polarity of the pole is ambiguous, because the corresponding magnetic direction has a low inclination and a westerly declination. Therefore, the Nikolai may have originated near 15° N latitude or, alternatively, as far south as 15° S latitude. In addition to being displaced northward, the Nikolai block has been rotated roughly 90° about the vertical axis. A measure of the reliability of this pole is provided by favorable results from the following tests: (1) Within one stratigraphic section, normal and reversed directions from consecutive flows are antipolar. (2) Consistent directions were obtained from sites 30 km apart. (3) Application of the fold test indicated the magnetization was acquired before the rocks were folded. (4) The magnetizations of several pilot specimens are thermally stable up to 550 °C. The stable component is probably carried by magnetite with lamellar texture, a primary feature commonly acquired by a basalt at high temperature during initial cooling of the magma. Geologic and paleomagnetic evidence indicates that the Nikolai is allochthonous to Alaska and that, together with associated formations in southern Alaska and British Columbia, it is part of a now disrupted equatorial terrane.


Author(s):  
Zhonghua Tian ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Peng Huang ◽  
Ji’en Zhang ◽  
...  

The orogenic architecture of the Altaids of Central Asia was created by multiple large-scale slab roll-back and oroclinal bending. However, no regional structural deformation related to roll-back processes has been described. In this paper, we report a structural study of the Beishan orogenic collage in the southernmost Altaids, which is located in the southern wing of the Tuva-Mongol Orocline. Our new field mapping and structural analysis integrated with an electron backscatter diffraction study, paleontology, U-Pb dating, 39Ar-40Ar dating, together with published isotopic ages enables us to construct a detailed deformation-time sequence: During D1 times many thrusts were propagated northwards. In D2 there was ductile sinistral shearing at 336−326 Ma. In D3 times there was top-to-W/WNW ductile thrusting at 303−289 Ma. Two phases of folding were defined as D4 and D5. Three stages of extensional events (E1−E3) separately occurred during D1−D5. Two switches of the regional stress field were identified in the Carboniferous to Early Permian (D1-E1-D2-D3-E2) and Late Permian to Early Triassic (D4-E3-D5). These two switches in the stress field were associated with formation of bimodal volcanic rocks, and an extensional interarc basin with deposition of Permian-Triassic sediments, which can be related to two stages of roll-back of the subduction zone on the Paleo-Asian oceanic margin. We demonstrate for the first time that two key stress field switches were responses to the formation of the Tuva-Mongol Orocline.


Author(s):  
Jia Qianqian ◽  
Guo Chao ◽  
Li Jianghai ◽  
Qu Ronghong

The nuclear power plant with two modular high-temperature gas-cooled reactors (HTR-PM) is under construction now. The control room of HTR-PM is designed. This paper introduces the alarm displays in the control room, and describes some verification and validation (V&V) activities of the alarm system, especially verification for some new human factor issues of the alarm system in the two modular design. In HTR-PM, besides the regular V&V similar to other NPPs, the interference effect of the alarm rings of the two reactor modules at the same time, and the potential discomfort of the two reactor operators after shift between them are focused. Verifications at early stage of the two issues are carried on the verification platform of the control room before the integrated system validation (ISV), and all the human machine interfaces (HMIs) in the control room, including the alarm system are validated in ISV. The test results on the verification platform show that the alarm displays and rings can support the operators understand the alarm information without confusion of the two reactors, and the shift between the two reactor operators have no adverse impact on operation. The results in ISV also show that the alarm system can support the operators well.


2017 ◽  
Vol 87 ◽  
pp. 31-37 ◽  
Author(s):  
Cristina Artini ◽  
Carlo Fanciulli ◽  
Gilda Zanicchi ◽  
Giorgio Andrea Costa ◽  
Riccardo Carlini

1990 ◽  
Vol 45 (7) ◽  
pp. 1084-1090 ◽  
Author(s):  
Klaus Praefcke ◽  
Bernd Kohne ◽  
Andreas Eckert ◽  
Joachim Hempel

Six S,S-dialkyl acetals 2a-f of inosose (1), tripodal in structure, have been synthesized, characterized and investigated by optical microscopy and differential scanning calorimetry (d.s.c.). The four S,S-acetals 2c-f with sufficiently long alkyl chains are thermotropic liquid crystalline; 2 e and 2 f are even dithermomesomorphic. Each of these four inosose derivatives 2c-f exhibits monotropically a most likely cubic mesophase (MI); in addition 2e and 2f show enantiotropically a hexagonal mesophase (Hx) with a non-covalent, supramolecular H-bridge architecture. Whereas the nature of the optically isotropic mesophase MI needs further clarification the stable high temperature mesophase Hx of 2 e and 2 f has been established by a miscibility test using a sugar S,S-dialkyl acetal also tripodal in structure and with a Hx phase proved by X-ray diffraction, but in contrast to 2 with an acyclic hydrophilic part. Similarities of structural features between the Hx-phases of 2e and 2f as well as of other thermotropic and lyotropic liquid crystal systems are discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document