Effects of Passaging on the Migration Response of Synovium-Derived Stem Cells to an Applied DC Electric Field

Author(s):  
Andrea R. Tan ◽  
Elena Alegre-Aguarón ◽  
Divya N. Dujari ◽  
Sonal R. Sampat ◽  
J. Chloë Bulinski ◽  
...  

Strategies for cartilage tissue engineering and repair have recently focused on cell sources from the surrounding joint tissue as an alternative to chondrocytes. Synovium-derived stem cells (SDSCs) are found in the intimal layer of the synovium, the thin overlying capsule surrounding the joint space [1] and have been found to exhibit a greater chondrogenic potential than stem cells from other origins such as bone marrow stem cells or adipose derived stem cells [2–4]. Under directed cues, these cells have been shown to be capable of migrating from the synovium membrane into articular cartilage defects, though the mechanism behind such movement is unclear. As a first step, we have previously shown that SDSCs expanded in 2D monolayer culture in a growth factor cocktail of TGF-β1, FGF, and PDGF-ββ exhibit directed cathodal migration with perpendicular alignment when under the influence of an applied DC electric field [5]. As cellular behavior and response to an external stimulus can change with exposure to growth factors and passage number, we look here to characterize the effects of passaging on the migration response of SDSCs to an applied electric field. We hypothesize that if these cells develop more chondrocyte-like characteristics with growth factor passaging, their response will mimic that which has previously been reported for chondrocytes, notably directed cathodal (negative pole) migration and perpendicular realignment of the long axis to the direction of applied field [6].

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jan-Philipp Stromps ◽  
Nora Emilie Paul ◽  
Björn Rath ◽  
Mahtab Nourbakhsh ◽  
Jürgen Bernhagen ◽  
...  

According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs) and provides an outlook on promising future strategies.


Author(s):  
Hadeer A. Abbassy ◽  
Laila M. Montaser ◽  
Sherin M. Fawzy

<p class="abstract">Musculoskeletal medicine targets both cartilage regeneration and healing of soft tissues. Articular cartilage repair and regeneration is primarily considered to be due to its poor regenerative properties. Cartilage defects due to joint injury, aging, or osteoarthritis have low self-repair ability thus they are most often irreversible as well as being a major cause of joint pain and chronic disability. Unfortunately, current methods do not seamlessly restore hyaline cartilage and may lead to the formation of fibro- or continue hypertrophic cartilage. Deficiency of efficient modalities of therapy has invited research to combine stem cells, scaffold materials and environmental factors through tissue engineering. Articular cartilage tissue engineering aims to repair, regenerate, and hence improve the function of injured or diseased cartilage. This holds great potential and has evoked intense interest in improving cartilage therapy. Platelet-rich plasma (PRP) and/or stem cells may be influential for tissue repair as well as cartilage regenerative processes.  A great promise to advance current cartilage therapies toward achieving a consistently successful modality has been held for addressing cartilage afflictions. The use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology may be the best way to reach this objective via tissue engineering. A current and emergent approach in the field of cartilage tissue engineering is explained in this review for specific application. In the future, the development of new strategies using stem cells seeded in scaffolds and the culture medium supplemented with growth factors could improve the quality of the newly formed cartilage<span lang="EN-IN">.</span></p>


2013 ◽  
Vol 1498 ◽  
pp. 59-66 ◽  
Author(s):  
Benjamin Holmes ◽  
Nathan J. Castro ◽  
Jian Li ◽  
Lijie Grace Zhang

ABSTRACTCartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension and surface nanoporosity were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter or suitable nanoporous structures. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce GAG and collagen synthesis that is indicative of chondrogenic differentiations of MSCs. Our novel scaffolds also performed better than controls, which make them promising for cartilage tissue engineering applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wenjing Liu ◽  
Haiyun Luo ◽  
Ruolan Wang ◽  
Yiyuan Kang ◽  
Wenting Liao ◽  
...  

Cartilage defects in temporomandibular disorders (TMD) lead to chronic pain and seldom heal. Synovium-derived mesenchymal stem cells (SMSCs) exhibit superior chondrogenesis and have become promising seed cells for cartilage tissue engineering. However, local inflammatory conditions that affect the repair of articular cartilage by SMSCs present a challenge, and the specific mechanism through which the function remains unclear. Thus, it is important to explore the chondrogenesis of SMSCs under inflammatory conditions of TMD such that they can be used more effectively in clinical treatment. In this study, we obtained SMSCs from TMD patients with severe cartilage injuries. In response to stimulation with IL-1β, which is well known as one of the most prevalent cytokines in TMD, MMP13 expression increased, while that of SOX9, aggrecan, and collagen II decreased during chondrogenic differentiation. At the same time, IL-1β upregulated the expression of mTOR and decreased the ratio of LC3-II/LC3-I and the formation of autophagosomes. Further study revealed that rapamycin pretreatment promoted the migration of SMSCs and the expression of chondrogenesis-related markers in the presence of IL-1β by inducing autophagy. 3-Benzyl-5-((2-nitrophenoxy)methyl)-dihydrofuran-2(3H)-one (3BDO), a new activator of mTOR, inhibited autophagy and increased the expression of p-GSK3βser9 and β-catenin, simulating the effect of IL-1β stimulation. Furthermore, rapamycin reduced the expression of mTOR, whereas the promotion of LC3-II/LC3-I was blocked by the GSK3β inhibitor TWS119. Taken together, these results indicate that rapamycin enhances the chondrogenesis of SMSCs by inducing autophagy, and GSK3β may be an important regulator in the process of rapamycin-induced autophagy. Thus, inducing autophagy may be a useful approach in the chondrogenic differentiation of SMSCs in the inflammatory microenvironment and may represent a novel TMD treatment.


Author(s):  
Elena Alegre-Aguarón ◽  
Sonal R. Sampat ◽  
Perry J. Hampilos ◽  
J. Chloë Bulinski ◽  
James L. Cook ◽  
...  

Adult articular cartilage has a poor healing capacity, which has lead to intense research toward development of cell-based therapies for cartilage repair. The destruction of articular cartilage results in osteoarthritis (OA), which affects about 27 million Americans. In order to create functional tissue, it is essential to mimic the native environment by optimizing expansion protocols. Cell passaging and priming with chemical or physical factors are often necessary steps in cell-based strategies for regenerative medicine [1]. The ability to identify biomarkers that can act as predictors of cells with a high capacity to form functional engineered cartilage will permit optimization of protocols for cartilage tissue engineering using different cell sources. Recent investigations have shown that chondrocytes and synovium-derived stem cells (SDSCs) are promising cell sources for cartilage repair [2,3]. The analysis of gene expression and comparative proteomics, which defines the differences in expression of proteins among different biological states, provides a potentially powerful tool in this effort [4]. The aim of this study was to investigate the impact of growth factor priming in 2D canine chondrocytes and SDSCs cultures by identifying differentially regulated biomarkers, which can correlate to functional tissue elaboration in 3D.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2496
Author(s):  
Inga Urlić ◽  
Alan Ivković

Cell-based therapy represents a promising treatment strategy for cartilage defects. Alone or in combination with scaffolds/biological signals, these strategies open many new avenues for cartilage tissue engineering. However, the choice of the optimal cell source is not that straightforward. Currently, various types of differentiated cells (articular and nasal chondrocytes) and stem cells (mesenchymal stem cells, induced pluripotent stem cells) are being researched to objectively assess their merits and disadvantages with respect to the ability to repair damaged articular cartilage. In this paper, we focus on the different cell types used in cartilage treatment, first from a biological scientist’s perspective and then from a clinician’s standpoint. We compare and analyze the advantages and disadvantages of these cell types and offer a potential outlook for future research and clinical application.


2011 ◽  
Vol 17 (17-18) ◽  
pp. 2259-2265 ◽  
Author(s):  
Sonal R. Sampat ◽  
Grace D. O'Connell ◽  
Jason V. Fong ◽  
Elena Alegre-Aguarón ◽  
Gerard A. Ateshian ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Catherine Baugé ◽  
Karim Boumédiene

Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.


Sign in / Sign up

Export Citation Format

Share Document