scholarly journals Cell Sources for Cartilage Repair—Biological and Clinical Perspective

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2496
Author(s):  
Inga Urlić ◽  
Alan Ivković

Cell-based therapy represents a promising treatment strategy for cartilage defects. Alone or in combination with scaffolds/biological signals, these strategies open many new avenues for cartilage tissue engineering. However, the choice of the optimal cell source is not that straightforward. Currently, various types of differentiated cells (articular and nasal chondrocytes) and stem cells (mesenchymal stem cells, induced pluripotent stem cells) are being researched to objectively assess their merits and disadvantages with respect to the ability to repair damaged articular cartilage. In this paper, we focus on the different cell types used in cartilage treatment, first from a biological scientist’s perspective and then from a clinician’s standpoint. We compare and analyze the advantages and disadvantages of these cell types and offer a potential outlook for future research and clinical application.

Author(s):  
Andrea R. Tan ◽  
Elena Alegre-Aguarón ◽  
Divya N. Dujari ◽  
Sonal R. Sampat ◽  
J. Chloë Bulinski ◽  
...  

Strategies for cartilage tissue engineering and repair have recently focused on cell sources from the surrounding joint tissue as an alternative to chondrocytes. Synovium-derived stem cells (SDSCs) are found in the intimal layer of the synovium, the thin overlying capsule surrounding the joint space [1] and have been found to exhibit a greater chondrogenic potential than stem cells from other origins such as bone marrow stem cells or adipose derived stem cells [2–4]. Under directed cues, these cells have been shown to be capable of migrating from the synovium membrane into articular cartilage defects, though the mechanism behind such movement is unclear. As a first step, we have previously shown that SDSCs expanded in 2D monolayer culture in a growth factor cocktail of TGF-β1, FGF, and PDGF-ββ exhibit directed cathodal migration with perpendicular alignment when under the influence of an applied DC electric field [5]. As cellular behavior and response to an external stimulus can change with exposure to growth factors and passage number, we look here to characterize the effects of passaging on the migration response of SDSCs to an applied electric field. We hypothesize that if these cells develop more chondrocyte-like characteristics with growth factor passaging, their response will mimic that which has previously been reported for chondrocytes, notably directed cathodal (negative pole) migration and perpendicular realignment of the long axis to the direction of applied field [6].


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2453 ◽  
Author(s):  
Sara Romanazzo ◽  
Stephanie Nemec ◽  
Iman Roohani

Here, we present a concise review of current 3D bioprinting technologies applied to induced pluripotent stem cells (iPSC). iPSC have recently received a great deal of attention from the scientific and clinical communities for their unique properties, which include abundant adult cell sources, ability to indefinitely self-renew and differentiate into any tissue of the body. Bioprinting of iPSC and iPSC derived cells combined with natural or synthetic biomaterials to fabricate tissue mimicked constructs, has emerged as a technology that might revolutionize regenerative medicine and patient-specific treatment. This review covers the advantages and disadvantages of bioprinting techniques, influence of bioprinting parameters and printing condition on cell viability, and commonly used iPSC sources, and bioinks. A clear distinction is made for bioprinting techniques used for iPSC at their undifferentiated stage or when used as adult stem cells or terminally differentiated cells. This review presents state of the art data obtained from major searching engines, including Pubmed/MEDLINE, Google Scholar, and Scopus, concerning iPSC generation, undifferentiated iPSC, iPSC bioprinting, bioprinting techniques, cartilage, bone, heart, neural tissue, skin, and hepatic tissue cells derived from iPSC.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jan-Philipp Stromps ◽  
Nora Emilie Paul ◽  
Björn Rath ◽  
Mahtab Nourbakhsh ◽  
Jürgen Bernhagen ◽  
...  

According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs) and provides an outlook on promising future strategies.


2020 ◽  
Author(s):  
Huifang Zhao ◽  
Zhiyuan Li

Epilepsy is the fourth most common neurological condition characterized by recurrent unprovoked seizures. Chronic and recurrent seizures may give rise to cell necrosis, astrocyte activation, neuron death, reactive oxygen species (ROS) production, and mitochondria dysfunction. Recent studies have shown that cell-based therapy is a promising treatment option for epilepsy. Various stem cell types were used for treatment of epilepsy in basic and experimental researches. It is especially vital to gauge the efficacy of distinct donor cell types, such as the embryonic stem cells and induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), hippocampal precursor cells, γ-aminobutyric acid-ergic progenitors, neural stem cells. The goal of this chapter is to evaluate the progress made hitherto in this area and to discuss the prospect for cell-based therapy for epilepsy.


Author(s):  
Hadeer A. Abbassy ◽  
Laila M. Montaser ◽  
Sherin M. Fawzy

<p class="abstract">Musculoskeletal medicine targets both cartilage regeneration and healing of soft tissues. Articular cartilage repair and regeneration is primarily considered to be due to its poor regenerative properties. Cartilage defects due to joint injury, aging, or osteoarthritis have low self-repair ability thus they are most often irreversible as well as being a major cause of joint pain and chronic disability. Unfortunately, current methods do not seamlessly restore hyaline cartilage and may lead to the formation of fibro- or continue hypertrophic cartilage. Deficiency of efficient modalities of therapy has invited research to combine stem cells, scaffold materials and environmental factors through tissue engineering. Articular cartilage tissue engineering aims to repair, regenerate, and hence improve the function of injured or diseased cartilage. This holds great potential and has evoked intense interest in improving cartilage therapy. Platelet-rich plasma (PRP) and/or stem cells may be influential for tissue repair as well as cartilage regenerative processes.  A great promise to advance current cartilage therapies toward achieving a consistently successful modality has been held for addressing cartilage afflictions. The use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology may be the best way to reach this objective via tissue engineering. A current and emergent approach in the field of cartilage tissue engineering is explained in this review for specific application. In the future, the development of new strategies using stem cells seeded in scaffolds and the culture medium supplemented with growth factors could improve the quality of the newly formed cartilage<span lang="EN-IN">.</span></p>


2020 ◽  
Author(s):  
ke xue ◽  
Yongkang Jiang ◽  
Xiaodie Zhang ◽  
Jun Wu ◽  
Lin Qi ◽  
...  

Abstract Background: Cartilage tissue engineering is a promising option for repairing cartilage defects caused by trauma, inflammation and osteoarthritis, although harvesting a large number of seeding cells with stable phenotypes remains a major challenge. Cartilage stem/progenitor cells (CSPCs) seem to be a promising cell source. Hypoxic extracellular vesicles secreted by mesenchymal stem cells may play a major role in cell-cell and tissue-tissue communication by transporting various RNAs and proteins in mesenchymal stem cell-based therapy. In the current study, we aimed to evaluate the effect of hypoxic adipose-derived stem cells (ADSCs)-derived extracellular vesicles (EVs) on CSPCs proliferation and differentiation. Methods: The characteristics of ADSCs-derived EVs were identified by and flow cytometric analysis. Proliferation, migration, and cartilage-related gene expression of CSPCs were measured with or without the presence of hypoxic ADSCs-derived EVs. The effect of ADSC-derived EVs on CSPCs were evaluated in alginate hydrogel culture, and SEM, histological staining, biochemical and biomechanical analysis were performed to evaluate the effect of hypoxic ADSCs-derived EVs on CSPCs in alginate hydrogel culture. Results: The results indicated that the majority of ADSC-derived EVs exhibited a round-shaped or cup-shaped morphology with a diameter of 40–1000 nm and expressed CD9, CD63, and CD81. CSPCs migration and proliferation were enhanced by hypoxic ADSCs-derived EVs, which also increased the expression of cartilage-related genes. The hypoxic ADSCs-derived EVs induced CSPCs to produce significantly more cartilage matrix and proteoglycan. Conclusions: The present study indicated that hypoxic ADSCs-derived EVs improved the proliferation and chondrogenic differentiation of CSPCs for cartilage tissue engineering.


Author(s):  
Hisham F. Bahmada ◽  
Mohamad K. Elajami ◽  
Reem Daouk ◽  
Hiba Jalloul ◽  
Batoul Darwish ◽  
...  

: Stem cells are undifferentiated cells with the ability to proliferate and convert to different types of differentiated cells that make up the various tissues and organs in the body. They exist both in embryos as pluripotent stem cells that can differentiate into the three germ layers and as multipotent or unipotent stem cells in adult tissues to aid in repair and homeostasis. Perturbations in these cells’ normal functions can give rise to a wide variety of diseases. In this review, we discuss the origin of different stem cell types, their properties and characteristics, their role in tissue homeostasis, current research, and their potential applications in various life-threatening diseases. We focus on neural stem cells, their role in neurogenesis and how they can be exploited to treat diseases of the brain including neurodegenerative diseases and cancer. Next, we explore current research in induced pluripotent stem cell (iPSC) techniques and their clinical applications in regenerative and personalized medicine. Lastly, we tackle a special type of stem cells called cancer stem cells (CSCs) and how they can be responsible for therapy resistance and tumor recurrence and explore ways to target them.


2013 ◽  
Vol 1498 ◽  
pp. 59-66 ◽  
Author(s):  
Benjamin Holmes ◽  
Nathan J. Castro ◽  
Jian Li ◽  
Lijie Grace Zhang

ABSTRACTCartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension and surface nanoporosity were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter or suitable nanoporous structures. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce GAG and collagen synthesis that is indicative of chondrogenic differentiations of MSCs. Our novel scaffolds also performed better than controls, which make them promising for cartilage tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document