Multilayered Structures for Electro Bonded Laminates

Author(s):  
Luigi Di Lillo ◽  
Dario Albino Carnelli ◽  
Andrea Bergamini ◽  
Paolo Ermanni

This paper reports on the investigation and optimization of the electric properties of a geometry based variable stiffness concept. The concept relies on the combination of electrostatic normal forces and friction between the layers of a multi-layer beam to develop structures, electro bonded laminates (EBL), with an actively tuneable bending stiffness. Previous studies have detailed the connection between the mechanical response of these system and the electrical properties of its polymer constitutive films. Particularly, they pointed out the need to improve both the dielectric and the insulating properties of these films in order to have an enhancement of the bending tunability range of the system. In this paper a multilayer polymer configuration is considered as a possible answer to this need and it is put forward together with the electric model and the relatively high frequency experimental evidence of the proposed solution.

2017 ◽  
Author(s):  
Massimiliano Galluzzi ◽  
Simone Bovio ◽  
Paolo Milani ◽  
Alessandro Podestà

We report on the modification of the electric properties of the imidazolium-based [BMIM][NTf2] ionic liquid upon surface confinement in the sub-monolayer regime. Solid-like insulating nanostructures of [BMIM][NTf2] spontaneously form on a variety of insulating substrates, at odd with the liquid and conductive nature of the same substances in the bulk phase. A systematic spatially resolved investigation by atomic force microscopy of the morphological, mechanical and electrical properties of [BMIM][NTf2] nanostructures showed that this liquid substance rearranges into lamellar nanostructures with a high degree of vertical order and enhanced resistance to mechanical compressive stresses and very intense electric fields, denoting a solid-like character. The morphological and structural reorganization has a profound impact on the electric properties of supported [BMIM][NTf2] islands, which behave like insulator layers with a relative dielectric constant between 3 and 5, comparable to those of conventional ionic solids, and significantly smaller than those measured in the bulk ionic liquid. These results suggest that in the solid-like ordered domains confined either at surfaces or inside the pores of the nanoporous electrodes of photo-electrochemical devices, the ionic mobility and the overall electrical properties can be significantly perturbed with respect to the bulk liquid phase, which would likely influence the<br>performance of the devices.<br>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gotthold Fläschner ◽  
Cosmin I. Roman ◽  
Nico Strohmeyer ◽  
David Martinez-Martin ◽  
Daniel J. Müller

AbstractUnderstanding the viscoelastic properties of living cells and their relation to cell state and morphology remains challenging. Low-frequency mechanical perturbations have contributed considerably to the understanding, yet higher frequencies promise to elucidate the link between cellular and molecular properties, such as polymer relaxation and monomer reaction kinetics. Here, we introduce an assay, that uses an actuated microcantilever to confine a single, rounded cell on a second microcantilever, which measures the cell mechanical response across a continuous frequency range ≈ 1–40 kHz. Cell mass measurements and optical microscopy are co-implemented. The fast, high-frequency measurements are applied to rheologically monitor cellular stiffening. We find that the rheology of rounded HeLa cells obeys a cytoskeleton-dependent power-law, similar to spread cells. Cell size and viscoelasticity are uncorrelated, which contrasts an assumption based on the Laplace law. Together with the presented theory of mechanical de-embedding, our assay is generally applicable to other rheological experiments.


Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


1996 ◽  
Vol 183 (1) ◽  
pp. 323-327 ◽  
Author(s):  
Q L Yang ◽  
E C Gotschlich

The lipooligosaccharide (LOS) expressed by gonococci spontaneously varies its structure at high frequency, but the underlying genetic mechanism has not been described. We have previously reported that the genes encoding the glycosyl transferases responsible for the biosynthesis of the variable alpha chain of the LOS of Neisseria gonorrhoeae are located in a locus containing five genes, lgtA, lgtB, lgtC, lgtD, and lgtE. Sequence analysis showed that lgtA, lgtC, and lgtD contained poly-G tracts within the coding frames, leading to the hypothesis that shifts in the number of guanosine residues in the poly-G tracts might be responsible for the high frequency variation in structure of gonococcal LOS. We now provide experimental evidence confirming this hypothesis.


2018 ◽  
Vol 249 ◽  
pp. 03005
Author(s):  
Xiang Zhang ◽  
Twan Capehart ◽  
Carl A. Moore

As people pay more attention to the safety of human-robotic interaction, the flexibility of machine joints is becoming more and more important. To address the needs of future robotic applications, many kinds of variable stiffness mechanisms have been designed by scientists. But most of the structures are complex. By studying and comparing many different mechanism designs of variable stiffness joint, we recognize the need to miniaturization and reduce weight of variable stiffness joints with high frequency operation. To address this, need a continuously Variable Compliant Joint (CVCJ) was designed. The core of the joint is based on the structure of the spherical continuously variable transmission (SCVT) which is the catalyst to change the stiffness continuously and smoothly. In this paper, we present a compact variable stiffness joint structure to meet the volume and weight requirements of the future robotic systems. We show the connection between the joint stiffness coefficient and the structure parameters by making mathematical analysis, modelling and simulation for the system to verify the ability to satisfy the base application requirements of the compliant joint.


Author(s):  
О. М. Петровський

Розглянуті питання передпосівної стимуляції на-сіння високочастотним електромагнітним полем.Запропоновано спосіб опромінення насіння і визна-чення його електричних характеристик. На основібудови клітин визначені електричні властивості біо-логічної тканини, з якої складається насіння. Пока-зана зміна складових активного опору в залежностівід частоти струму. Експериментально доведено,що еквівалентну електричну схему неможливо звес-ти до простих випадків з’єднання опорів і ємностей,а саме насіння не можна вважати нейтральнимдіелектриком. Розроблена методика оцінки інтенси-вності обмінних процесів залежно від електричногоопору насіння. The questions of stimulation of seed before sowing are considered by the high-frequency electromagnetic field considered. The method of irradiation of seed and determination of him is offered electric descriptions. On the basis of structure of cages electric properties of biological fabric which seed consist of are certain. The change of constituents of active resistance is shown depending on frequency of current. It is experimentally proved that it is impossible to erect an equivalent electric chart to the simple cases of connection of resistances and capacities, namely seed can not be considered a neutral dielectric. The method of estimation of intensity of exchange processes  is developed depending on electric resistance of seed.


1994 ◽  
Vol 361 ◽  
Author(s):  
W. Pan ◽  
C.L. Thio ◽  
S.B. Desu ◽  
Cheewon Chung

ABSTRACTReactive ion etching damage to sputtered Pt/PZT/Pt ferroelectric capacitors was studied using Ar and CHCIFCF3 etch gases. Electrical properties, hysteresis, fatigue, and leakage current of PZT capacitors, before and after etching, were compared to examine the etching damage. It is found that the damage effects depend on etching time and are mainly due to the physical bombardment effect. The PZT capacitors etched with CHCIFCF3 plasma showed less damage than those etched in Ar plasma. The electric properties of etched Pt/PZT/Pt capacitors are recovered by annealing at 400 °C for 30min.


2006 ◽  
Vol 320 ◽  
pp. 49-52
Author(s):  
Hiroshi Uchida ◽  
Hiroshi Nakaki ◽  
Hiroshi Funakubo ◽  
Seiichiro Koda

The electrical properties of perovskite-based ferroelectric films were improved by ion modification using rare-earth cations. Thin films of rare-earth-modified lead zirconate titanate [Pb(Zr,Ti)O3] were fabricated on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition technique. The substitution of volatile cations in the simple-perovskite oxides, such as Pb2+ in Pb(Zr,Ti)O3 films, enhanced the insulating properties of the film. The crystal anisotropy of the Pb(Zr,Ti)O3 film could be controlled by varying the species and the amount of replacing cations to enhance the spontaneous polarization. Thus, ion modification using Dy3+ cation could enhance the remanent polarization of Pb(Zr,Ti)O3 film consequently.


Sign in / Sign up

Export Citation Format

Share Document