SMA Actuated Vertical Blade Louver System: Part 1 — Performance Requirements and Design

Author(s):  
Alan L. Browne ◽  
Nancy L. Johnson ◽  
Jeffrey Brown

Airflow over/under/around a vehicle can affect many important aspects of vehicle performance including vehicle drag (and through this vehicle fuel economy), vehicle lift and downforce, and cooling/heat exchange for the vehicle powertrain and A/C systems. While active devices are present on all aircraft, the majority of known airflow control devices in current use in ground transportation are of fixed geometry, location, orientation, and stiffness. The project, conducted during the 2004–2006 timeframe, whose performance requirements, design, and bench-top prototype build phases, are described in this paper was successful in developing an SMA actuator based approach for opening and closing a vertically-oriented-blade louver system to be used for on-demand control of the airflow into the engine compartment, i.e. for on-demand control of both cooling airflow as well as aerodynamic drag. Beyond feasibility, the initial full scale bench top working models demonstrated an active materials based approach which would have decreased weight and a smaller packaging envelop than a comparable motor driven unit. This demonstration showed that actuation speed, force, and cyclic stability all could meet the application requirements. The specific design that was selected, a set of parallel vertically oriented blades each linked through a gear to a common rack that is translated by a linear SMA actuator, uses straight linear actuation to produce a reversible synchronous 90 degree rotation of the blades, i.e. a full opening and closing capability for the louver system. Key technical issues that remained to be demonstrated and resolved through design modifications if necessary in Part 2 — on-vehicle performance testing — of this study were related in most part to robustness in the harsh vehicle front-end environment, a prime example being mechanism stalling due to ice or mud buildup.

Author(s):  
Anthony L. Smith ◽  
Wonhee Kim ◽  
Jeffrey Brown

Abstract Automotive grille shutters are used to reduce the aerodynamic drag of the vehicle when cooling requirements are low by blocking a portion of the airflow through the condenser, radiator, and fan module (CRFM); the lower aerodynamic drag improves fuel economy. A passively actuated SMA grille shutter was designed as a less complex and lower overall cost solution to current electro-mechanical designs. This paper presents the design and calibration process for the automotive grille shutter SMA actuator using passive temperature control. The initial design target opening and closing temperatures of the grille shutter system were determined by climatic wind tunnel and vehicle road tests measuring motor-driven grille shutter position versus CRFM exhaust temperature. The initial SMA actuator design almost met the temperature requirements; subsequent road testing confirmed the need to shift the start to close and fully closed temperatures at least 6 °C higher to meet specifications. The transformation temperatures of the SMA actuator were calibrated by varying stress on the SMA wires by means of the total cross-sectional area and biasing force. Tests were performed in an environmental chamber to characterize the temperature-position behavior during heating and cooling cycles, the best candidate improved the hysteresis band by 3 °C from the initial design. This study presents an industry need for the development of lower hysteresis SMA wires/springs for passive applications, which can maximize the benefit of SMA actuation by utilizing the temperature-stress-strain coupling behavior of SMA.


Author(s):  
Alan L. Browne ◽  
Nancy L. Johnson ◽  
Hanif Muhammad ◽  
Jeffrey Brown

Airflow over/under/around a vehicle can affect many important aspects of vehicle performance including vehicle drag (and through this vehicle fuel economy) and cooling/heat exchange for the vehicle powertrain and A/C systems. The vast majority of known devices in current use to control airflow over/under/around the vehicle are of fixed geometry, location, orientation, and stiffness. The project whose performance requirements, design, and build phases are described in this paper was successful in developing an SMA actuator based approach to the on-demand reversible deployment of an air dam through vertical translation. Beyond feasibility, the initial bench top working models demonstrated an active materials based approach which would add little weight to the existing stationary system, and could potentially perform well in the harsh under vehicle environment due to a lack of exposed bearings and pivots. This demonstration showed that actuation speed, force, and cyclic stability all could meet the application requirements. The solution, a dual point balanced actuation approach based on shape memory alloy wires, uses straight linear actuation to produce a reversible height change of 50 mm. Key technical issues with regard to design remaining to be resolved given the harsh under vehicle environment are in most part related to improved system robustness, a prime example being mechanism sealing.


1981 ◽  
Author(s):  
Duane E. Johnson ◽  
Thomas E. Austin ◽  
William F. Van Ostrand

2011 ◽  
Vol 415-417 ◽  
pp. 2345-2348
Author(s):  
Yang Zhang ◽  
Dong Tang ◽  
Rui Xue Duan ◽  
Hong Jun Ni

A new tubular cathode support for Direct Ethanol Fuel Cell (DEFC) was prepared by the gelcasting process using mesocarbon microbead(MCMB) and graphite as the main raw materials. The effects of different graphite doping ratios on tensile strength, bending strength, crushing strength, volume resistivity and shrinkage rate for the prepared tubular cathode support were studied by experimental test. The result showed that the prepared tubular cathode support had very good comprehensive performance. The tubular cathode support with 10% graphite exhibits the best performance such as bending strength 25MPa and resistivity30µΩ•m, and it satisfied the DEFC cathode working conditions and performance requirements.


2012 ◽  
Vol 16 (3) ◽  
pp. 230-235 ◽  
Author(s):  
Takamitsu Yamamoto ◽  
Yoichi Katayama ◽  
Junichi Ushiba ◽  
Hiroko Yoshino ◽  
Toshiki Obuchi ◽  
...  

2018 ◽  
Vol 21 (6) ◽  
pp. 611-616 ◽  
Author(s):  
Daniel Graupe ◽  
Nivedita Khobragade ◽  
Daniela Tuninetti ◽  
Ishita Basu ◽  
Konstantin V. Slavin ◽  
...  

2014 ◽  
Vol 24 (01) ◽  
pp. 1450001 ◽  
Author(s):  
Xiaolan Wu ◽  
Guifang Guo ◽  
Jun Xu ◽  
Binggang Cao

Plug-in hybrid electric vehicles (PHEVs) have been offered as alternatives that could greatly reduce fuel consumption relative to conventional vehicles. A successful PHEV design requires not only optimal component sizes but also proper control strategy. In this paper, a global optimization method, called parallel chaos optimization algorithm (PCOA), is used to optimize simultaneously the PHEV component sizes and control strategy. In order to minimize the cost, energy consumption (EC), and emissions, a multiobjective nonlinear optimization problem is formulated and recast as a single objective optimization problem by weighted aggregation. The driving performance requirements of the PHEV are considered as the constraints. In addition, to evaluate the objective function, the optimization process is performed over three typical driving cycles including Urban Dynamometer Driving Schedule (UDDS), Highway Fuel Economy Test (HWFET), and New European Driving Cycle (NEDC). The simulation results show the effectiveness of the proposed approach for reducing the fuel cost, EC and emissions while ensuring that the vehicle performance has not been sacrificed.


2020 ◽  
Vol 8 (15) ◽  
pp. 7297-7308 ◽  
Author(s):  
Khang Ngoc Dinh ◽  
Zengxia Pei ◽  
Ziwen Yuan ◽  
Van Chinh Hoang ◽  
Li Wei ◽  
...  

A dual-functional metal template achieves on-demand control of metal–N–C sites, porous structures, and surface wettability in a carbon nanofiber catalyst, enabling flexible zinc–air batteries with outstanding performance under various mechanical deformations.


Author(s):  
Masanori Ito ◽  
◽  
Feifei Zhang

The world's container cargo trading is increasing daily, and the role of the container terminal is becoming more important as the center of cargo transportation. In Japan, new container terminals being constructed face very severe competition with larger, cheaper terminals so they must handle cargo more efficiently and cheaply. To cope, handling systems such as container cranes, yard cranes, and conveyers are being automated to enable unattended operation unloading and loading schedule planning, etc., are being computerized. In these system, crane automation and control computerization are already generalized, but automatic control of container conveyers is not completed yet. The container conveyer -15m long, 4m wide, and 1.5m high - picks up containers from container ships with a container crane and hauls them to the shift yard for release to the yard crane. Both crane are operated automatically, so the conveyer must stop at the desired position within a permissible error of ±7.5cm, and run on a predetermined course and speed. Collision avoidance is required because many vehicles oparate on the same course. The automated guided vehicle (AGV) system, which is diesel-driven, 4WS and 4WD, was thought to be effective, but container weights very widely, as do road conditions which depend on weather, so conventional control is not sufficient to maintain the required accuracy. We applied learning control to maintain the desired course and for stopping at the desired position. Speed was controlled, conventionally. The system's applicability was confirmed with computer simulation and vehicle performance testing. This system will be used at the Kawasaki container terminal in 1999 and we are currently working on improving performance.


Sign in / Sign up

Export Citation Format

Share Document