Experimental Comparison Between a Fractal-Inspired Multi-Frequency Piezoelectric Energy Converter and a Traditional Converter

Author(s):  
Davide Castagnetti

Harvesting energy from ambient vibrations in order to power autonomous sensors is a challenging issue. The aim of this work is to compare the power output from an innovative multi-frequency fractal-inspired piezoelectric converter to that from a traditional multi-cantilever piezoelectric converter. The converters are designed in order to give the same eigenfrequencies in a given range and a prototype of both is built using commercial materials. The experimental tests investigate both the effect of the acceleration and of the resistive load applied to the converters for each of the three eigenfrequencies in the range between 0 and 120 Hz. The fractal-inspired converter exhibits a significantly higher specific output power at the first and third of the eigenfrequencies investigated.

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Davide Castagnetti

Harvesting energy from ambient vibrations in order to power autonomous sensors is a challenging issue. The aim of this work is to compare the power output from an innovative wideband fractal-inspired piezoelectric converter to that from a traditional multicantilever piezoelectric energy converter. In a given frequency range, the converters are tuned on the same eigenfrequencies. The effect of the input acceleration and of the resistive load applied to the converters is investigated experimentally for each of the three eigenfrequencies in the range between 0 and 120 Hz. The fractal-inspired converter exhibits a significantly higher specific output power at the first and third of the eigenfrequencies investigated.


2012 ◽  
Vol 83 ◽  
pp. 69-74
Author(s):  
Davide Castagnetti

A promising harvesting technique, in terms of simplicity and efficiency, is the conversion of ambient kinetic energy through piezoelectric materials. This work aims to design and investigate a piezoelectric converter conform to a fractal-inspired, multi-frequency structure previously presented by the author. A physical prototype of the converter is built and experimentally examined, up to 120 Hz, in terms of modal response and power output. Three eigenfrequencies are registered and the power output is particularly good at the fundamental eigenfrequency. Also the effect of the resistive load applied to the converter is investigated.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


2019 ◽  
Vol 86 (9) ◽  
Author(s):  
He Zhang ◽  
Kangxu Huang ◽  
Zhicheng Zhang ◽  
Tao Xiang ◽  
Liwei Quan

Scavenging mechanical energy from the deformation of roadways using piezoelectric energy transformers has been intensively explored and exhibits a promising potential for engineering applications. We propose here a new packaging method that exploits MC nylon and epoxy resin as the main protective materials for the piezoelectric energy harvesting (PEH) device. Wheel tracking tests are performed, and an electromechanical model is developed to double evaluate the efficiency of the PEH device. Results indicate that reducing the embedded depth of the piezoelectric chips may enhance the output power of the PEH device. A simple scaling law is established to show that the normalized output power of the energy harvesting system relies on two combined parameters, i.e., the normalized electrical resistive load and normalized embedded depth. It suggests that the output power of the system may be maximized by properly selecting the geometrical, material, and circuit parameters in a combined manner. This strategy might also provide a useful guideline for optimization of piezoelectric energy harvesting system in practical roadway applications.


2011 ◽  
Vol 148-149 ◽  
pp. 169-172 ◽  
Author(s):  
Hong Yan Wang ◽  
Xiao Biao Shan ◽  
Tao Xie

The impedance matching and the optimization of power from a circular piezoelectric energy harvester with a central-attached mass are studied. A finite element model is constructed to analyze the electrical equivalent impedance of the circular piezoelectric energy harvester. Furthermore, the complex conjugate matching load is used to extract the maximum output power of the energy harvester. The power output from complex conjugate matching load is compared with the power output from the resistive matching load and a constant resistance, separately. The results suggest that the complex conjugate matching can result in a significant increase of the output power for all frequencies. The effective bandwidth of the piezoelectric energy harvester is extended significantly.


Author(s):  
Davide Castagnetti

In order to develop self-powered wireless sensor nodes, many energy harvesting devices, able to convert freely available ambient energy into electrical energy, have been proposed in the literature. A promising technique, in terms of simplicity and high conversion efficiency, is the harvesting of ambient kinetic energy through piezoelectric materials. The aim of this work is to design and investigate the modal response and the power output of a fractal-inspired, multi-frequency, piezoelectric energy converter, previously presented by the author. Two are the steps of the work. First, a computational modal analysis of the converter is performed. Second, a physical prototype of the converter is built and its eigenfrequencies and power generation under different resistive loads are experimentally examined in the range between 0 and 120 Hz. The converter exhibits three eigenfrequencies and a good power output, in particular at the first eigenfrequency.


2018 ◽  
Vol 1 (2) ◽  
pp. p6
Author(s):  
Anahita Zargarani ◽  
S. Nima Mahmoodi

In this paper, a new method is proposed for improving a piezoelectric energy harvester’s output power. A piezoelectric vibration energy harvester has an inherent internal capacitance. The new approach adopts inductance to reduce the reactance of the internal capacitance and enhance the output power. To show the practicality of this method, four electrical circuits are investigated numerically and experimentally for a piezoelectric beam energy harvester: Simple Resistive Load, Inductive Load, standard AC-DC, and Inductive AC-DC circuits. An Inductive Load circuit is built by adding an inductor to a Simple Resistive Load circuit, while an Inductive AC-DC circuit is built by adding an inductor to a standard AC-DC circuit. Experimental results indicate that the Inductive Load and the Inductive AC-DC circuits avail the Simple Resistive Load and standard AC-DC circuits respectively. The inductive AC-DC circuit shows a 6.7% increase in the output power compared to the standard AC-DC circuit.


Author(s):  
Anahita Zargarani ◽  
S. Nima Mahmoodi

This paper investigates an experimental approach for enhancing the output power of a piezoelectric energy harvester. The proposed method adopts inductance to reduce the effect of the piezoelectric harvester’s impedance, and boost the output power. Four electrical circuits for a piezoelectric beam harvester are investigated experimentally; Simple Resistive Load (SRL), Inductive Load (IL), Standard AC-DC, and Inductive AC-DC circuits. The results show that the adaptation of inductor in the IL and Inductive AC-DC improves the output power compared to the SRL and Standard AC-DC respectively. The Inductive AC-DC circuit is shown to increase the output power by 6.7% in comparison to the existing standard AC-DC circuits.


Author(s):  
Wentao Sui ◽  
Huirong Zhang ◽  
Chongqiu Yang ◽  
Dan Zhang ◽  
Rujun Song ◽  
...  

This paper presents a magnetically coupling bending-torsion piezoelectric energy harvester based on vortex-induced vibration from low-speed wind. The theoretical model of the energy harvester was formulated and validated by wind tunnel experiments. Numerical and experimental results showed that the power output and bandwidth of the proposed harvester are improved about 180% and 230% respectively compared with the nonmagnetic coupling harvester. Furthermore, the effects of cylinder, piezoelectric layer, load resistance, and magnetic nonlinear parameters on the harvester were investigated based on the distributed parameter model. The results showed that the length of cylinder hardly affect output power, but the diameter of cylinder presented complicated influences. The width of piezoelectric beam was negatively correlated with the torsion angle. With increasing the length of piezoelectric layer, an optimal wind velocity and load resistance can be obtained for the maximum output power. With decreasing of the distance between two magnets, the resonant bandwidth, the optimal power output, and torsion angle can be enhanced, respectively. Besides, the magnetic potential energy increased owing to the magnetically coupling, which led to the improvement of onset speed for the energy harvester. This study provides a guideline on improving the performance of bending-torsion vibration piezoelectric energy harvester.


Sign in / Sign up

Export Citation Format

Share Document