Joint Characteristic Effect on the Performance of Nonlinear Piezoelectric Energy Harvesters

Author(s):  
Kamal Jahani ◽  
Parisa Aghazadeh

In this work, the effects of joint characteristics on the performance of a nonlinear piezoelectric energy harvester are investigated numerically. Large amplitude deflection unimorph beam with a tip mass and a nonlinear piezoelectric layer is considered as an energy harvester. By applying Euler-Lagrange equation and the Gauss’s law, mechanical and electrical equations of motion are obtained respectively, under two scenarios, i.e. with an ideal (rigid) joint and with a flexible one. A numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on harvested power. Results show that considering ideal joint between harvester and base structure leads to overestimating the maximum output power and the range of effective excitation frequency.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


2019 ◽  
Vol 20 (1) ◽  
pp. 90-99
Author(s):  
Aliza Aini Md Ralib ◽  
Nur Wafa Asyiqin Zulfakher ◽  
Rosminazuin Ab Rahim ◽  
Nor Farahidah Za'bah ◽  
Noor Hazrin Hany Mohamad Hanif

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz. ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 933 ◽  
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Federico Fune ◽  
Luca Lampani ◽  
Franco Mastroddi ◽  
...  

In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive nano/micro-electronic components. In this research work, a PEH based on the flag-flutter mechanism is presented. This mechanism is based on fluid-structure interaction (FSI). The flag is subjected to the axial airflow in the subsonic wind tunnel. The performance evaluation of the harvester and aeroelastic analysis is investigated numerically and experimentally. A novel solution is presented to extract energy from Limit Cycle Oscillations (LCOs) phenomenon by means of PZT transduction. The PZT patch absorbs the flow-induced structural vibrations and transforms it into electrical energy. Furthermore, the optimal resistance and length of the flag is predicted to maximize the energy harvesting. Different configurations of flag i.e., with Aluminium (Al) patch and PZT patch for flutter mode vibration mode are studied numerically and experimentally. The bifurcation diagram is constructed for the experimental campaign for the flutter instability of a cantilevered flag in subsonic wind-tunnel. Moreover, the flutter boundary conditions are analysed for reduced critical velocity and frequency. The designed PZT energy harvester via flag-flutter mechanism is suitable for energy harvesting in aerospace engineering applications to drive wireless sensors. The maximum output power that can be generated from the designed harvester is 6.72 mW and the optimal resistance is predicted to be 0.33 MΩ.


Author(s):  
Paulo S. Varoto ◽  
Andreza T. Mineto

It is known that the best performance of a given piezoelectric energy harvester is usually limited to excitation at its fundamental resonance frequency. If the ambient vibration frequency deviates slightly from this resonance condition then the electrical power delivered is drastically reduced. One possible way to increase the frequency range of operation of the harvester is to design vibration harvesters that operate in the nonlinear regime. The main goal of this article is to discuss the potential advantages of introducing nonlinearities in the dynamics of a beam type piezoelectric vibration energy harvester. The device is a cantilever beam partially covered by piezoelectric material with a magnet tip mass at the beam’s free end. Governing equations of motion are derived for the harvester considering the excitation applied at its fixed boundary. Also, we consider the nonlinear constitutive piezoelectric equations in the formulation of the harvester’s electromechanical model. This model is then used in numerical simulations and the results are compared to experimental data from tests on a prototype. Numerical as well as experimental results obtained support the general trend that structural nonlinearities can improve the harvester’s performance.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3845 ◽  
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika ◽  
Artūras Kilikevičius

This paper represents a numerical and experimental investigation of the bidirectional piezoelectric energy harvester. The harvester can harvest energy from the vibrating base in two perpendicular directions. The introduced harvester consists of two cantilevers that are connected by a particular angle and two seismic masses. The first mass is placed at a free end of the harvester while the second mass is fixed at the joining point of the cantilevers. The piezoelectric energy harvester employs the first and the second out of plane bending modes. The numerical investigation was carried out to obtain optimal geometrical parameters and to calculate the mechanical and electrical characteristics of the harvester. The energy harvester can provide stable output power during harmonic and impact-based excitation in two directions. The results of the investigations showed that energy harvester provides a maximum output power of 16.85 µW and 15.9 4 µW when the base has harmonic vibrations in y and z directions, respectively. Maximum output of 4.059 nW/N and 3.1 nW/N in y and z directions were obtained in case of impact based excitation


Author(s):  
Hichem Abdelmoula ◽  
Nathan Sharpes ◽  
Hyeon Lee ◽  
Abdessattar Abdelkefi ◽  
Shashank Priya

We design and experimentally validate a zigzag piezoelectric energy harvester that can generate energy at low frequencies and which can be used to operate low-power consumption electronic devices. The harvester is composed of metal and piezoelectric layers and is used to harvest energy through direct excitations. A computational model is developed using Abaqus to determine the exact mode shapes and coupled frequencies of the considered energy harvester in order to design a broadband torsion-bending mechanical system. Analysis is then performed to determine the optimal load resistance. The computational results are compared and validated with the experimental measurements. More detailed analysis is then carried out to investigate the effects of the masses on the bending and torsion natural frequencies of the harvester and generated power levels. The results show that due to the coupling between the bending and torsion modes of the zigzag structure, highest levels of the harvested power are obtained when the excitation frequency matches the coupled frequency of torsion type for three different values of the tip mass.


2011 ◽  
Vol 148-149 ◽  
pp. 169-172 ◽  
Author(s):  
Hong Yan Wang ◽  
Xiao Biao Shan ◽  
Tao Xie

The impedance matching and the optimization of power from a circular piezoelectric energy harvester with a central-attached mass are studied. A finite element model is constructed to analyze the electrical equivalent impedance of the circular piezoelectric energy harvester. Furthermore, the complex conjugate matching load is used to extract the maximum output power of the energy harvester. The power output from complex conjugate matching load is compared with the power output from the resistive matching load and a constant resistance, separately. The results suggest that the complex conjugate matching can result in a significant increase of the output power for all frequencies. The effective bandwidth of the piezoelectric energy harvester is extended significantly.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
F. Khameneifar ◽  
M. Moallem ◽  
S. Arzanpour

This paper presents modeling and analysis of a piezoelectric mounted rotary flexible beam that can be used as an energy scavenger for rotary motion applications. The energy harvester system consists of a piezoelectric bimorph cantilever beam with a tip mass mounted on a rotating hub. Assuming Euler–Bernoulli beam equations and considering the effect of a piezoelectric transducer, equations of motion are derived using the Lagrangian approach followed by relationships describing the harvested power. The equations provide a quantitative description of how the hub acceleration and gravity due to the tip mass contribute power to the energy harvester. In particular, expressions describing optimum load resistance and the maximum power that can be harvested using the proposed system are derived. Numerical simulations are performed to show the performance of the harvester by obtaining tip velocities and electrical output voltages for a range of electrical load resistances and rotational speeds. It is shown that by proper sizing and parameter selection, the proposed system can supply enough energy for operating wireless sensors in rotating mechanisms such as tires and turbines.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Fengxia Wang

Abstract In this work, a parametric model for a frequency-up-conversion piezoelectric energy harvester (PEH) was developed based on the Galerkin method. The PEH is composed of a piezoelectric bimorph and a stopper, which was subjected to a harmonic excitation. Although backward coupling results in a structure dynamic damping, models with neglected backward coupling were often adopted to estimate the output power of a piezoelectric energy harvester. The purpose of this work is to examine the effect of backward coupling on the dynamic response and the output power generation for a frequency-up-conversion PEH. With the same base excitations, we compared the dynamics and output energies of two cases: (1) neglecting the backward coupling effect (BCE) in the model and (2) including the BCE in the model. To obtain the optimum gap with maximum output power, we studied the relationship between the output power and the gap of the steady-state solutions. From the analytical results, it was found that the BCE can be neglected as long as there is no impact or the output power is small. However, once impacts get involved, the piezoelectric backward effect dominates the total damping due to small mechanical damping which is true for most PEH. The backward coupling will significantly diminish both the vibration and output power. Therefore, if the BCE is neglected in an impact-driven frequency-up-conversion PEH, the simplified model will exaggerate the output power.


Author(s):  
Wentao Sui ◽  
Huirong Zhang ◽  
Chongqiu Yang ◽  
Dan Zhang ◽  
Rujun Song ◽  
...  

This paper presents a magnetically coupling bending-torsion piezoelectric energy harvester based on vortex-induced vibration from low-speed wind. The theoretical model of the energy harvester was formulated and validated by wind tunnel experiments. Numerical and experimental results showed that the power output and bandwidth of the proposed harvester are improved about 180% and 230% respectively compared with the nonmagnetic coupling harvester. Furthermore, the effects of cylinder, piezoelectric layer, load resistance, and magnetic nonlinear parameters on the harvester were investigated based on the distributed parameter model. The results showed that the length of cylinder hardly affect output power, but the diameter of cylinder presented complicated influences. The width of piezoelectric beam was negatively correlated with the torsion angle. With increasing the length of piezoelectric layer, an optimal wind velocity and load resistance can be obtained for the maximum output power. With decreasing of the distance between two magnets, the resonant bandwidth, the optimal power output, and torsion angle can be enhanced, respectively. Besides, the magnetic potential energy increased owing to the magnetically coupling, which led to the improvement of onset speed for the energy harvester. This study provides a guideline on improving the performance of bending-torsion vibration piezoelectric energy harvester.


Sign in / Sign up

Export Citation Format

Share Document