Dispersion in Nonlinear Plates: Amplitude Dependent Lamb Waves

Author(s):  
Pawel Packo ◽  
Michael J. Leamy

This paper presents results from a perturbation-based analysis approach, and accompanying numerical validation, for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinearities considered include those arising from geometric and material nonlinearities. Using a Lindstedt-Poincaré perturbation analysis, nonlinear dispersion relationships are presented in closed form using the partial wave technique. Solvability conditions, based on an operator formalism accompanied by inner product projections against adjoint solutions, yield higher-order dispersion approximations capturing amplitude-dependent Lamb wave propagation. Numerical simulations using a cellular automata approach verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise frequency-wavenumber matching, including at large amplitudes.

2010 ◽  
Vol 123-125 ◽  
pp. 899-902
Author(s):  
Chao Du ◽  
Qing Qing Ni ◽  
Toshiaki Natsuki

Signals propagate on plate-like structures as ultrasonic guided waves, and analysis of Lamb waves has been widely used for on-line monitoring. In this study, the wave velocities of symmetric and anti-symmetric modes in various directions of propagation were investigated. Since the wave velocities of these two modes are different, it is possible to compute the difference in their arrival times when these waves propagated the distance from the vibration source to sensor. This paper presents an evaluation formulation of wave velocity and describes a generalized algorithm for locating a vibration source on a thin, laminated plate. With the different velocities of two modes based on Lamb wave dispersion, the method uses two sensors to locate the source on a semi-infinite interval of a plate. The experimental procedure supporting this method employs pencil lead breaks to simulate vibration sources on quasi-isotropic and unidirectional laminated plates. The transient signals generated in this way are transformed using a wavelet transform. The vibration source locations are then detected by utilizing the distinct wave velocities and arrival times of the symmetric and anti-symmetric wave modes. The method is an effective technique for identifying impact locations on plate-like structures.


1999 ◽  
Author(s):  
Y. C. Jung ◽  
T. Kundu ◽  
M. Ehsani

Abstract The feasibility of detecting defects in concrete beams using Lamb waves is investigated in this paper. The traditional ultrasonic methods for inspecting defects in concrete use the reflection and scattering of longitudinal waves by internal defects. Signal amplitude and time of flight measurements provide information about the internal defects in concrete. However, these methods are time consuming and often fail to detect honeycombs, closed cracks and small defects. In this paper the potential of the Lamb wave technique to detect those defects in large concrete beams is investigated. The Lamb wave technique is found to be reliable for detecting such defects in concrete beams.


1990 ◽  
Vol 57 (4) ◽  
pp. 923-929 ◽  
Author(s):  
G. R. Liu ◽  
J. Tani ◽  
K. Watanabe ◽  
T. Ohyoshi

The wave propagation in arbitrary anisotropic laminates is investigated on the basis of an exact theory. The dispersion relations of Lamb waves are determined for graphite/epoxy symmetric angle-ply laminates and hybrid composite ones which consist of carbon/epoxy and glass/epoxy layers. The dispersion and anisotropy of phase velocities for fundamental modes are discussed in detail. The energy distributions in the thickness direction of laminates are calculated for each kind of Lamb wave. A hybrid composite laminate is found to have better capability in absorbing impact energy by analyzing the strain energy distribution during the wave propagation. The results of the strain energy distribution are useful in determining the arrangement and the fiber orientation of the layers of hybrid composite laminates.


2018 ◽  
Vol 25 (6) ◽  
pp. 1227-1232 ◽  
Author(s):  
Sergey V. Kuznetsov

Propagation of harmonic Lamb waves in plates made of functionally graded materials with transverse inhomogeneity is analyzed by applying Cauchy six-dimensional formalism previously developed for the study of Lamb wave propagation in homogeneous or stratified anisotropic plates. For anisotropic plates with arbitrary transverse inhomogeneity a closed form implicit solution for the dispersion equation is derived and analyzed.


2013 ◽  
Vol 588 ◽  
pp. 140-148 ◽  
Author(s):  
Rafal Radecki ◽  
Wieslaw Jerzy Staszewski ◽  
Tadeusz Uhl

Lamb waves are the most widely used guided ultrasonic waves for structural damage detection. One of the major problems associate with Lamb wave propagation is the effect of temperature on wave propagation parameters. It is important that these parameters are more sensitive to damage than to varying temperature. The paper demonstrates how amplitude and arrival time of Lamb waves are affected by temperature. The analysis is performed for the experimental data gathered from Lamb wave propagation in a damaged aluminium plate. A simple clustering algorithm is used to distinguish between "undamaged" and "damaged" conditions in the presence of changing temperature.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2570 ◽  
Author(s):  
Beata Zima ◽  
Rafał Kędra

The article presents the results of the numerical investigation of Lamb wave propagation in concrete plates while taking into account the complex concrete mesostructure. Several concrete models with randomly distributed aggregates were generated with the use of the Monte Carlo method. The influence of aggregate ratio and particle size on dispersion curves representing Lamb wave modes was analyzed. The results obtained for heterogeneous concrete models were compared with theoretical results for homogeneous concrete characterized by the averaged macroscopic material parameters. The analysis indicated that not only do the averaged material parameters influence the dispersion solution, but also the amount and size of aggregate particles. The study shows that Lamb waves propagate with different velocities in homogeneous and heterogeneous models and the difference increases with aggregate ratio and particle size, which is a particularly important observation for wave-based diagnostic methods devoted to concrete structures.


Author(s):  
Jacob Brown ◽  
Whitney Reynolds ◽  
Derek Doyle ◽  
Andrei Zagrai

The use of elastic wave based Structural Health Monitoring has shown its usefulness in both characterizing and diagnosing composite structures. Techniques using elastic wave SHM are being developed to allow for improved efficiency and assurance in all stages of space structure development and deployment. These techniques utilize precise understanding of wave propagation characteristics to extract meaningful information regarding the health and validity of a component, assembly, or structure. However, many of these techniques focus on the diagnostic of traditional, isotropic materials, and questions remain as to the effect of the orthotropic properties of resin matrix composite material on the propagation of elastic waves. As the demands and expectations placed upon composite structures continue to expand in the space community, these questions must be addressed to allow the development of elastic wave based SHM techniques that will enable advancements in areas such as automated build validation and qualification, and in-situ characterization and evaluation of increasingly complex space structures. This study attempts to aid this development by examines the effect of cross ply, off-axis fiber orientation on the propagation characteristics of lamb waves. This is achieved by observing the result of symmetric and anti-symmetric wave propagation across materials in cases containing both off-axis and axially-aligned elements. In both cases the surface plies of the test specimen are axially aligned with the wave propagation direction. Using these results, the relative effect of core ply orientation on lamb wave propagation, and lamb wave sensitivity to bulk properties, or alternatively, the dominance of surface properties on propagation characteristics, can be seen, and this information can be used to aid in future research and application of lamb waves for interrogation of advanced, high-strain composite space structures. It was found that the core orientation caused significant variation in the S0 wave velocity, while yielding little influence on the A0 wave velocity.


2015 ◽  
Vol 1094 ◽  
pp. 500-504
Author(s):  
Hamada M. Elgamal ◽  
Zai Lin Yang ◽  
Jian Wei Zhang

Understanding the characteristics of Lamb waves is very important for developing a structural health monitoring system. The propagation characteristics of Lamb waves are described in the form of dispersion curves, which are plots of phase/group velocities versus the product offrequency-thicknessgenerated by solving the Lamb wave equations. This paper presents a numerical modeling of Lamb waves’ amplitude behaviors for isotropic aluminum plate (Al 2024-T3). The numerical simulations were carried out using ANSYS by exciting the Lamb wave at the plate end in the frequency range of 150-200 kHz for different plate thicknesses.


2021 ◽  
pp. 107754632199014
Author(s):  
Reza Soleimanpour ◽  
Ching-Tai Ng

This study investigates the higher harmonic generation of the Lamb wave at a delamination due to contact acoustic nonlinearity, which is a clapping phenomenon between sublaminate surfaces due to the Lamb wave interaction with the delamination. In this study, higher harmonics of the Lamb wave induced at the delamination in composite laminates are studied in detail. This study performs both numerical and experimental studies. A three-dimensional finite element model is proposed for predicting the propagation of nonlinear Lamb waves in composite laminates and is verified using experimentally measured data. The results show the proposed numerical model can reasonably predict higher harmonic generated by contact acoustic nonlinearity. It is found that the delamination is the major source of contact acoustic nonlinearity in the composite laminates. A mode conversion study is also carried out to gain further physical insight into the higher harmonic generation of the Lamb wave at the delamination.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6823
Author(s):  
Phong B. Dao ◽  
Wieslaw J. Staszewski

Lamb waves have been widely used for structural damage detection. However, practical applications of this technique are still limited. One of the main reasons is due to the complexity of Lamb wave propagation modes. Therefore, instead of directly analysing and interpreting Lamb wave propagation modes for information about health conditions of the structure, this study has proposed another approach that is based on statistical analyses of the stationarity of Lamb waves. The method is validated by using Lamb wave data from intact and damaged aluminium plates exposed to temperature variations. Four popular unit root testing methods, including Augmented Dickey–Fuller (ADF) test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, Phillips–Perron (PP) test, and Leybourne–McCabe (LM) test, have been investigated and compared in order to understand and make statistical inference about the stationarity of Lamb wave data before and after hole damages are introduced to the aluminium plate. The separation between t-statistic features, obtained from the unit root tests on Lamb wave data, is used for damage detection. The results show that both ADF test and KPSS test can detect damage, while both PP and LM tests were not significant for identifying damage. Moreover, the ADF test was more stable with respect to temperature changes than the KPSS test. However, the KPSS test can detect damage better than the ADF test. Moreover, both KPSS and ADF tests can consistently detect damages in conditions where temperatures vary below 60 °C. However, their t-statistics fluctuate more (or less homogeneous) for temperatures higher than 65 °C. This suggests that both ADF and KPSS tests should be used together for Lamb wave based structural damage detection. The proposed stationarity-based approach is motivated by its simplicity and efficiency. Since the method is based on the concept of stationarity of a time series, it can find applications not only in Lamb wave based SHM but also in condition monitoring and fault diagnosis of industrial systems.


Sign in / Sign up

Export Citation Format

Share Document