The Effect of Fatigue Loading on Electrical Impedance in Open-Hole Carbon Nanofiber-Modified Glass Fiber/Epoxy Composites

Author(s):  
I. T. Karnik ◽  
T. N. Tallman

Abstract Composite materials are ideal for many weight-conscious applications such as aerospace and automotive structures because of their exceptionally high specific properties. However, composite materials are susceptible to complex damage and difficult-to-predict damage growth. This necessitates the application of structural health monitoring (SHM) for in-operation monitoring of damage formation and accumulation. Self-sensing materials are strong candidates for composite SHM because they do not suffer from limitations associated with traditional, point-based sensors. A common approach to self-sensing is the piezoresistive effect in nanofiller-modified materials. To date, work in the area of self-sensing via the piezoresistive effect has focused overwhelmingly on the direct current (DC) response of these materials. This is an important limitation because alternating current (AC) effects inherently provide more information by relating both impedance and phase to damage. Therefore, this work explores the effect of high-cycle fatigue loading on the AC response of carbon nanofiber (CNF)-modified glass fiber/epoxy laminates. Specifically, impedance magnitude and phase angle are both measured through the thickness and along the length of a tension-tension fatigue-loaded specimen with an open-hole stress concentration as a function of load cycle and up to 10 MHz. The collected impedance data is then fit to an equivalent circuit model and correlated to stiffness changes. This means that changes in equivalent circuit behavior can be used to track fatigue-induced softening in self-sensing composites. In light of these promising preliminary results, AC effects appear to have considerable potential for real-time tracking of damage accumulation.

2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

2019 ◽  
Vol 777 (12) ◽  
pp. 73-77
Author(s):  
B.A. BONDAREV ◽  
◽  
T.N. STORODUBTSEVA ◽  
D.A. KOPALIN ◽  
S.V. KOSTIN ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Zhao ◽  
Yihang Zhang ◽  
Rongrong Sun ◽  
Wen-Sheng Zhao ◽  
Yue Hu ◽  
...  

A compact frequency selective surface (FSS) for 5G applications has been designed based on 2.5-dimensional Jerusalem cross. The proposed element consists of two main parts: the successive segments of the metal traces placed alternately on the two surfaces of the substrate and the vertical vias connecting traces. Compared with previous published two-dimensional miniaturized elements, the transmission curves indicate a significant size reduction (1/26 wavelengths at the resonant frequency) and exhibit good angular and polarization stabilities. Furthermore, a general equivalent circuit model is established to provide direct physical insight into the operating principle of this FSS. A prototype of the proposed FSS has been fabricated and measured, and the results validate this design.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Chaemin Im ◽  
Geonyoung Kim ◽  
Jeseok Bang ◽  
Kibum Choi ◽  
Soobin An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document