Aerothermal Performance of Shroudless Turbine Blade Tips With Effects of Relative Casing Motion

Author(s):  
A. S. Virdi ◽  
Q. Zhang ◽  
L. He ◽  
H. D. Li ◽  
R. Hunsley

Recent work has indicated qualitatively different heat transfer characteristics between a transonic blade tip and a subsonic one. High resolution experimental data can be acquired for blade tip heat transfer research using a high speed linear cascade. While recognising an important role played by the cascade tests in validating computational models at the same conditions, some questions arise in relation to the effects of relative casing motion: 1) Does the relative casing movement change the main flow physics influencing the blade tip aerothermal performance? 2) Can a cascade set up with stationary casing wall rank different designs? 3) How do the effects of the casing motion depend on tip design configurations? A combined experimental and CFD study on several high pressure blade tip configurations is conducted to address these issues. Firstly, extensive experimental tests with aerodynamic loss and heat transfer measurement in a high speed linear cascade have been carried out for a squealer tip configuration at engine representative aerodynamic conditions. A systematic validation of the CFD solver (Rolls-Royce HYDRA) is presented, which serves as a basis for the computational analyses of the effects of the relative casing motion. Two tip configurations (squealer and flat tip) at three tip gaps (0.5%, 1.0%, 1.5% span) are analysed. The main aerodynamic impact of the casing motion is seen to promote the passage vortex, which consequently supresses the pitchwise reach of the tip leakage vortex. Inside the tip gap, the behaviour is dominated by the extra wall friction in relation of the inertia of the bulk fluid through the gap. As such, the moving casing effect is particularly strong for the flat tip at a small tip gap. For the large and medium tip gaps, both stationary and moving casing results are shown to consistently capture the trends in overall aerothermal performances. The present results confirm that even with relative casing motion, there is still a significant portion of transonic flow over a blade tip. For both the stationary and moving casing cases, the gap dependence of the over-tip heat transfer shows opposite trends for the transonic and subsonic regions respectively. The gap dependence of the blade tip heat transfer is shown to be clearly dependent on tip geometry configurations, as the bulk flow in a squealer cavity is subsonic regardless of the tip gap size, whilst the local flow state over a flat tip is much more responsive to the change of gap size.

Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n ◽  
Weihong Zhang

The blade tip region encounters high thermal loads because of the hot gas leakage flows, and it must therefore be cooled to ensure a long durability and safe operation. A common way to cool a blade tip is to design serpentine passages with 180° turn under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase blade tip lifetime. Pins, dimples and protrusions are well recognized as effective devices to augment heat transfer in various applications. In this paper, enhanced heat transfer of an internal blade tip-wall has been predicted numerically. The computational models consist of a two-pass channel with 180° turn and arrays of circular pins or hemispherical dimples or protrusions internally mounted on the tip-wall. Inlet Reynolds numbers are ranging from 100,000 to 600,000. The overall performance of the two-pass channels is evaluated. Numerical results show that the heat transfer enhancement of the pinned tip is up to a factor of 3.0 higher than that of a smooth tip while the dimpled-tip and protruded-tip provide about 2.0 times higher heat transfer. These augmentations are achieved at the cost of an increase of pressure drop by less than 10%. By comparing the present cooling concepts with pins, dimples and protrusions, it is shown that the pinned-tip exhibit best performance to improve the blade tip cooling. However, when disregarding the added active area and considering the added mechanical stress, it is suggested that the usage of dimples is more suitable to enhance blade tip cooling, especially at low Reynolds numbers.


1947 ◽  
Vol 14 (4) ◽  
pp. A317-A336 ◽  
Author(s):  
Ascher H. Shapiro ◽  
W. R. Hawthorne

Abstract Recent developments in the fields of propulsion, flow machinery, and high-speed flight have emphasized the need for an improved understanding of the characteristics of compressible flow. A one-dimensional analysis for flow without shocks is presented which takes into account the simultaneous effects of area change, wall friction, drag of internal bodies, external heat exchange, chemical reaction, change of phase, injection of gases, and changes in molecular weight and specific heat. The method of selecting independent and dependent variables, and the organization of the working equations, leads, it is believed, to a better understanding of the influence of the foregoing effects, and also simplifies greatly the analytical treatment of particular problems. Examples are given first of several simple types of flow, including (a) area change only; (b) heat transfer only; (c) wall friction only; and (d) gas injection only. In addition, examples of flow with combined effects are given, including (a) simultaneous friction and area change; (b) simultaneous friction and heat transfer; and (c) simultaneous liquid injection and evaporation. A one-dimensional analysis for flow through a discontinuity is presented, allowing for energy, shock, drag, and gas-injection effects, and for changes in gas properties. This analysis is applicable to such processes as: (a) the adiabatic normal shock; (b) combustion; (c) moisture condensation shocks; and (d) steady explosion waves.


Author(s):  
H. Ma ◽  
Q. Zhang ◽  
L. He ◽  
Z. Wang ◽  
L. Wang

A basic attribute for turbine blade film cooling is that coolant injected should be largely passively convected by the local base flow. However, the effective working of the conventional wisdom may be compromised when the cooling injection strongly interacts with the base flow. Rotor blade tip of a transonic high-pressure (HP) turbine is one of such challenging regions for which basic understanding of the relevant aerothermal behavior as a basis for effective heat transfer/cooling design is lacking. The need to increase our understanding and predictability for high-speed transonic blade tip has been underlined by some recent findings that tip heat transfer characteristics in a transonic flow are qualitatively different from those at a low speed. Although there have been extensive studies previously on squealer blade tip cooling, there have been no published experimental studies under a transonic flow condition. The present study investigates the effect of cooling injection on a transonic squealer tip through a closely combined experimental and computational fluid dynamics (CFD) effort. The experimental and computational results as presented in Part I have consistently revealed some distinctive aerothermal signatures of the strong coolant-base flow interactions. In this paper, as Part II, detailed analyses using the validated CFD solutions are conducted to identify, analyze, and understand the causal links between the aerothermal signatures and the driving flow structures and physical mechanisms. It is shown that the interactions between the coolant injection and the base over-tip leakage (OTL) flow in the squealer tip region are much stronger in the frontal subsonic region than the rear transonic region. The dominant vortical flow structure is a counter-rotating vortex pair (CRVP) associated with each discrete cooling injection. High HTC stripes on the cavity floor are directly linked to the impingement heat transfer augmentation associated with one leg of the CRVP, which is considerably enhanced by the near-floor fluid movement driven by the overall pressure gradient along the camber line (CAM). The strength of the coolant-base flow interaction as signified by the augmented values of the HTC stripes is seen to correlate to the interplay and balance between the OTL flow and the CRVP structure. As such, for the frontal subsonic part of the cavity, there is a prevailing spanwise inward flow initiated by the CRVP, which has profoundly changed the local base flow, leading to high HTC stripes on the cavity floor. On the other hand, for the rear high speed part, the high inertia of the OTL flow dominates; thus, the vortical flow disturbances associated with the CRVP are largely passively convected, leaving clear signatures on the top surface of the suction surface rim. A further interesting side effect of the strong interaction in the frontal subsonic region is that there is considerable net heat flux reduction (NHFR) in an area seemingly unreachable by the injected coolant. The present results have confirmed that this is due to the large reduction in the local HTC as a consequence of the upstream propagated impact of the strong coolant-base flow interactions.


Author(s):  
Michael Sampson ◽  
Avery Fairbanks ◽  
Jacob Moseley ◽  
Phillip M. Ligrani ◽  
Hongzhou Xu ◽  
...  

Abstract Currently, there is a deficit of experimental data for surface heat transfer characteristics and thermal transport processes associated with tip gap flows, and a lack of understanding of performance and behavior of film cooling as applied to blade tip surfaces. As a result, many avenues of opportunity exist for development of creative tip configurations with innovative external cooling arrangements. Overall goals of the present investigations are to reduce cooling air requirements, and reduce thermal loading, with equivalent improvements of thermal protection and structural integrity. Described is the development of experimental facilities, including a Supersonic/Transonic Wind Tunnel and linear cascade, for investigations of surface heat transfer characteristics of transonic turbine blade tips with unique squealer geometries and innovative film cooling arrangements. Note that data from past investigations are used to illustrate some of the experimental procedures and approaches which will be employed within the investigation. Of interest is development of a two-dimensional linear cascade with appropriate cascade airfoil flow periodicity. Included are boundary layer flow bleed devices, downstream tailboards, and augmented cascade inlet turbulence intensity. The present linear cascade approach allows experimental configuration parameters to be readily varied. Tip gap magnitudes are scaled so that ratios of tip gap to inlet boundary layer thickness, ratios of tip gap to blade axial chord length, and ratios of tip gap magnitudes to blade true chord length match engine hardware configurations. Ratios of inlet boundary layer thickness to tip gap range from 3 to 5. Innovative film cooling configurations are utilized for one blade tip configuration, and scaled engine components are modelled and tested with complete external cooling arrangements. Blade tip and geometry characteristics are also considered, including squealer depth and squealer tip wall thickness. With these experimental components, results will be obtained with engine representative transonic Mach numbers, Reynolds numbers, and film cooling parameters, including density ratios, which are achieved using foreign gas injection with carbon dioxide. Transient, infrared thermography approaches will be employed to measure spatially-resolved distributions of surface heat transfer coefficients, adiabatic surface temperature, and adiabatic film cooling effectiveness.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
D. O. O’Dowd ◽  
Q. Zhang ◽  
L. He ◽  
M. L. G. Oldfield ◽  
P. M. Ligrani ◽  
...  

This paper presents an experimental and numerical investigation of the aerothermal performance of an uncooled winglet tip, under transonic conditions. Spatially resolved heat transfer data, including winglet tip surface and near-tip side-walls, are obtained using the transient infrared thermography technique within the Oxford high speed linear cascade test facility. Computational fluid dynamics (CFD) predictions are also conducted using the Rolls-Royce HYDRA suite. Most of the spatial heat transfer variations on the tip surface are well-captured by the CFD solver. The transonic flow pattern and its influence on heat transfer are analyzed, which shows that the turbine blade tip heat transfer is greatly influenced by the shock wave structure inside the tip gap. The effect of the casing relative motion is also numerically investigated. The CFD results indicate that the local heat transfer distribution on the tip is affected by the relative casing motion but the tip flow choking and shock wave structure within the tip gap still exist in the aft region of the blade.


Author(s):  
P. Zhang

Flow and heat transfer characteristics of liquid nitrogen in mini/micro-channels own many particular aspects and are very important for applications. In the present study, the investigation of flow and heat transfer characteristics of liquid nitrogen in mini/micro-channels is presented. It is found that small viscosity enables the flow state in mini/micro-channels to be turbulent state, which proves that the classical theory for pressure drop is still valid if the surface roughness of the passage is properly taken into consideration. Experiments of flow boiling of liquid nitrogen are conducted under both adiabatic and diabatic conditions. It is shown that confinement number Co = 0.5 can be applicable in classifying the heat transfer characteristics of liquid nitrogen in macro- and micro-channels. Flow visualization in micro-channels at low temperatures poses big challenges in image magnification and illumination. These two problems have been subtly overcome in the investigation and clear images have been obtained. The flow patterns and flow regimes of two-phase flow of liquid nitrogen indicate different features from the room-temperature fluidss. Furthermore, a very simple but effective method for 3D flow visualization by one high-speed camera is proposed and implemented. Finally, numerical analysis of the flow boiling of liquid nitrogen in mini/micro-channel is carried out to deepen the understanding of mechanism.


Author(s):  
G. Hetsroni ◽  
A. Mosyak

The presence of surfactant additives in water was found to enhance significantly the boiling heat transfer. The objective of the present investigation was to compare the bubble growth in water to that of a surfactant solution with negligible environmental impact. The study was conducted to clarify the effect of the heat flux on the dynamics of bubble nucleation. The bubble growth under condition of pool boiling in water and surfactant solutions was studied using high speed video technique. The bubble generation was studied on a horizontal flat surface; where the natural roughness of the surface was used to produce the bubbles. At heat flux of q= 10 kW/m2 the life-time and the volume of bubble growth in surfactant solution did not differ significantly from those of water. The time behavior of the contact angle of bubble growing in surfactant solution is qualitatively similar to that of water. At a heat flux of q= 50 kW/m2, boiling in surfactant solution, when compared with that of pure water, was observed to be more vigorous. Surfactant promotes activation of nucleation sites; the bubbles appeared in a cluster mode; the life-time of each bubble in the cluster is shorter than that of a single water bubble. The detachment diameter of water bubble increases with increasing heat flux, whereas analysis of bubble growth in surfactant solution reveals the opposite effect: the detachment diameter of the bubble decreases with increasing heat flux. Natural convection boiling of water and surfactants at atmospheric pressure in narrow horizontal annular channels was studied experimentally in the range of Bond numbers Bo = 0.185–1.52. The flow pattern was visualized by high-speed video recording to identify the different regimes of boiling of water and surfactants. The channel length was 24mm and 36mm, the gap size was 0.45, 1.2, 2.2, and 3.7mm. The heat flux was in the range of 20–500 kW/m2, the concentration of surfactant solutions was varied from 10 to 600 ppm. For water boiling at Bond numbers Bo<1 the CHF in restricted space is lower than that in unconfined space. This effect increases with increasing the channel length. For water at Bond number Bo = 1.52, boiling can almost be considered as unconfined. Additive of surfactant led to enhancement of heat transfer compared to water boiling in the same gap size, however, this effect decreased with decreasing gap size. For the same gap size, CHF in surfactant solutions was significantly lower than that in water. Hysteresis was observed for boiling in degraded surfactant solutions.


Author(s):  
H. Ma ◽  
Z. Wang ◽  
L. Wang ◽  
Q. Zhang ◽  
Z. Yang ◽  
...  

The uncertainty associated with the convective heat transfer coefficient (HTC) obtained in transient thermal measurement is often high, especially in high speed flow. The present study demonstrates that the experimental accuracy could be much improved by an actively controlled ramp heating instead of the conventional step heating approach. A general design guideline for the proposed ramp heating method is derived theoretically and further demonstrated by simulation cases. This paper also presents a detailed experimental study for transonic turbine blade tip heat transfer. Repeatable, high-resolution tip HTC contour was obtained through transient IR measurement with the proposed ramp heating method. Detailed uncertainty analysis shows that the resulting HTC uncertainty level is much lower than the experimental data currently available in the open literature. The ramp heating approach is specially recommended to the high-speed heat transfer experimental research community to improve the accuracy of the transient thermal measurement technique.


Author(s):  
S. Naik ◽  
T. P. Sommer ◽  
M. Schnieder

This paper describes the aero-thermal design and validation of an advanced axial flow turbine. This turbine, which has evolved from the existing and proven GT26/GT24 design consists of an optimised annulus flow path using high lift airfoil profiles and improved aerodynamic matching between the turbine stages. A major design feature of the turbine has been to control and reduce the aerodynamic losses, with particular attention being devoted to minimising the secondary, trailing edge and blade tip losses. The advantages of these design changes to the overall turbine efficiency has been verified by extensive controlled experimentation in high-speed cascade test facilities; by the utilisation of 3D multi-row computational fluid dynamics analysis tools, and via engine tests. In addition to the aerodynamic design modifications of the turbine, the thermal designs of the turbine vanes, blades and heat-shields were also optimised. For the first stage film cooled vane and blade airfoils and platforms, both the film cooling layout and operating characteristics were improved. And for all the internally cooled airfoils, the internal heat transfer design features were additionally optimised, which allowed for more homogenous metal temperature distributions on the airfoil and endwall surfaces. The verification and validation of the thermal designs of the turbine components was confirmed via extensive dedicated testing in high-speed cascades for the film cooling performances, and in scaled perspex models for the internal heat transfer coefficients and local flow distributions. The complete turbine was further tested and validated in the GT26 Test Power Plant in Birr, Switzerland via a dedicated turbine thermal paint test run and a subsequent performance and mapping testing phase.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n ◽  
Quiwang Wang

The blade tip region encounters high thermal loads because of the hot gas leakage flows, and it must therefore be cooled to ensure a long durability and safe operation. A common way to cool a blade tip is to design serpentine passages with 180-deg turn under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip lifetime. Dimples and protrusions are well recognized as effective devices to augment heat transfer in various applications. In this paper, enhanced heat transfer of an internal blade tip-wall has been predicted numerically. The computational models consist of a two-pass channel with 180-deg turn and arrays of hemispherical dimples or protrusions internally mounted on the tip-wall. Inlet Reynolds numbers are in the range of 100,000 to 600,000. The computations are three dimensional, steady, incompressible and non-rotating. The overall performance of the two-pass channels is also evaluated. It is found that due to the combination of turning impingement and protrusion crossflow or dimple advection, the heat transfer coefficient of the augmented tip is a factor of 2.0 higher than that of a smooth tip. This augmentation is achieved at the cost of a penalty of pressure drop by around 5%. By comparing the present dimples or protrusions performance with others in previous works, it is found that the augmented-tips show the best performance, and the dimpled or protruded tips are superior to those pin-finned tips when the active area enhancement is excluded. It is suggested that dimples and protrusions can be used to enhance blade tip heat transfer and hence improve blade tip cooling.


Sign in / Sign up

Export Citation Format

Share Document