Experimental and Unsteady Numerical Investigation of the Tip Clearance Noise of an Axial Fan

Author(s):  
Tao Zhu ◽  
Thomas H. Carolus

The aerodynamic and aeroacoustic performance of axial fans are strongly affected by the unavoidable tip clearance. Two identical fan impellers but with different tip clearance ratio were investigated. Unsteady wall pressure fluctuations in the tip region of the rotating blades and on the interior wall of the duct type shroud and the overall sound radiated were analysed by an unsteady numerical Scale-Adaptive Simulation (SAS) and unsteady surface pressure measurements in both, the stationary and rotating system. Based on SAS-predicted pressure fluctuations on the blade surfaces the acoustic analogy according to Ffowcs Williams and Hawkings (FWH) was employed to calculate the sound pressure in the far field. In general, experimentally and numerically determined unsteady flow were found to be a tendentially good agreement. The spatial and temporal structure of the tip vortex system and the resulting unsteady pressure distribution on the surfaces in the vicinity of the blade tips was revealed in good detail. The vortices’ strength and trajectories as well as the unsteadiness are controlled by the size of the tip clearance and the operating point: As tip clearance is increased blade/vortex interaction becomes more prevalent and with it the unsteady surface pressure and eventually the sound radiated into the far field. The broadband tip clearance noise was acceptably predicted from the simulation results, while the prediction at discrete frequency should still be improved in the further work.

2021 ◽  
Vol 263 (1) ◽  
pp. 5650-5663
Author(s):  
Hasan Kamliya Jawahar ◽  
Syamir Alihan Showkat Ali ◽  
Mahdi Azarpeyvand

Experimental measurements were carried out to assess the aeroacoustic characteristics of a 30P30N high-lift device, with particular attention to slat tonal noise. Three different types of slat modifications, namely slat cove filler, serrated slat cusp, and slat finlets have been experimentally examined. The results are presented for an angle of attack of α = 18 at a free-stream velocity of U = 30 m/s, which corresponds to a chord-based Reynolds number of Re = 7 x 10. The unsteady surface pressure near the slat region and far-field noise were made simultaneously to gain a deeper understanding of the slat noise generation mechanisms. The nature of the low-frequency broadband hump and the slat tones were investigated using higher-order statistical approaches for the baseline 30P30N and modified slat configurations. Continuous wavelet transform of the unsteady surface pressure fluctuations along with secondary wavelet transform of the broadband hump and tones were carried out to analyze the intermittent events induced by the tone generating resonant mechanisms. Stochastic analysis of the wavelet coefficient modulus of the surface pressure fluctuations was also carried out to demonstrate the inherent differences of different tonal frequencies. An understanding into the nature of the noise generated from the slat will help design the new generation of quite high-lift devices.


2004 ◽  
Vol 128 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Carmen E. Kachel ◽  
John D. Denton

This paper presents the results of a numerical and experimental investigation of the unsteady pressure field in a three-stage model of a high pressure steam turbine. Unsteady surface pressure measurements were taken on a first and second stage stator blade, respectively. The measurements in the blade passage were supplemented by time resolved measurements between the blade rows. The explanation of the origin of the unsteady pressure fluctuations was supported by unsteady three-dimensional computational fluid dynamic calculations of which the most extensive calculation was performed over two stages. The mechanisms affecting the unsteady pressure field were: the potential field frozen to the upstream blade row, the pressure waves originating from changes in the potential pressure field, the convected unsteady velocity field, and the passage vortex of the upstream blade row. One-dimensional pressure waves and the unsteady variation of the pitchwise pressure gradient due to the changing velocity field were the dominant mechanisms influencing the magnitude of the surface pressure fluctuations. The magnitude of these effects had not been previously anticipated to be more important than other recognized effects.


2021 ◽  
Vol 263 (2) ◽  
pp. 4459-4470
Author(s):  
Shivam Sundeep ◽  
Xin Zhang ◽  
Siyang Zhong ◽  
Huanxian Bu

Aeroacoustic and aerodynamic characteristics of the turbulent boundary layer encountering a large obstacle are experimentally investigated in this paper. Two-dimensional obstacles with a square and a semi-circular cross-section mounted on a flat plate are studied in wind tunnel tests, with particular interests in the shear layer characteristics, wall pressure fluctuations, and far-field noise induced by the obstacles. Synchronized measurements of the far-field noise and the wall pressure fluctuations were conducted using microphone arrays in the far-field and flush-mounted in the plate, respectively. Additionally, the streamwise and wall-normal velocity fluctuations behind the obstacle were measured using the X-wire probe. The measured velocity profiles, spectra, and wall pressure spectra are compared, showing that the rectangular obstacle has a significant impact on both the turbulent flow and far-field noise. The large-scale vortical structures shed from the obstacles can be identified in the wall pressure spectra, the streamwise velocity spectra, and the wall pressure coherence analysis. Within the shear layer, the pairing of vortices occurs and the frequency of the broadband peak in the velocity spectra decreases as the shear layer grows downstream. Further eddy convective velocities of large-scale vortical structures inside the shear layer were analyzed based on the wall pressure fluctuations.


Author(s):  
Pengfei Chai ◽  
Zonghan Sun ◽  
Zhiqiang Chang ◽  
Zhigang Peng ◽  
Jie Tian ◽  
...  

Abstract The fan is the main component of the cooling system of an automobile engine. A typical automobile cooling fan consists of a shrouded axial fan, stator vanes, a deflector, and a cover. With recent developments in the automobile industry, the increase in the speed of rotation and blade load of cooling fans has increased the noise generated by them. To reduce it, it is important to analyze the characteristics of this noise. This paper uses an acoustic test to examine the characteristics of flow and noise of automobile cooling fans. The frequency spectrum and far-field radiation of the noise of the fan are first analyzed through far-field measurements, and the influence of the single rotor, tip clearance of the blade, and cover on fan noise is studied. The distribution of the mode spectrum and characteristics of sound propagation of discrete tonal noise are then examined using the circumferential mode test. The influence of the flow structure on fan noise is also studied. The flow characteristics and distribution of the source of noise of the automobile cooling fan are then used to analyze the influence of the structure of the fan on the noise generated by it. The results can help develop designs to reduce the noise of automobile cooling fans.


2021 ◽  
Author(s):  
Pengfei Chai ◽  
Zonghan Sun ◽  
Zhiqiang Chang ◽  
Zhigang Peng ◽  
Jie Tian ◽  
...  

Abstract The fan is the main component of the cooling system of an automobile engine. A typical automobile cooling fan consists of a shrouded axial fan, stator vanes, a deflector, and a cover. With recent developments in the automobile industry, the increase in the speed of rotation and blade load of cooling fans has increased the noise generated by them. To reduce it, it is important to analyze the characteristics of this noise. This paper uses an acoustic test to examine the characteristics of flow and noise of automobile cooling fans. The frequency spectrum and far-field radiation of the noise of the fan are first analyzed through far-field measurements, and the influence of the single rotor, tip clearance of the blade, and cover on fan noise is studied. The distribution of the mode spectrum and characteristics of sound propagation of discrete tonal noise are then examined using the circumferential mode test. The influence of the flow structure on fan noise is also studied. The flow characteristics and distribution of the source of noise of the automobile cooling fan are then used to analyze the influence of the structure of the fan on the noise generated by it. The results can help develop designs to reduce the noise of automobile cooling fans.


2000 ◽  
Vol 415 ◽  
pp. 175-202 ◽  
Author(s):  
Y. P. GUO ◽  
M. C. JOSHI ◽  
P. H. BENT ◽  
K. J. YAMAMOTO

This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.


1998 ◽  
Vol 122 (3) ◽  
pp. 433-441 ◽  
Author(s):  
Douglas P. Probasco ◽  
Tim J. Leger ◽  
J. Mitch Wolff ◽  
William W. Copenhaver ◽  
Randall M. Chriss

Dynamic loading of an inlet guide vane (IGV) in a transonic compressor is characterized by unsteady IGV surface pressures. These pressure data were acquired for two spanwise locations at a 105 percent speed operating condition, which produces supersonic relative Mach numbers over the majority of the rotor blade span. The back pressure of the compressor was varied to determine the effects from such changes. Strong bow shock interaction was evident in both experimental and computational results. Variations in the back pressure have significant influence on the magnitude and phase of the upstream pressure fluctuations. The largest unsteady surface pressure magnitude, 40 kPa, was obtained for the near-stall mass flow condition at 75 percent span and 95 percent chord. Radial variation effects caused by the spanwise variation in relative Mach number were measured. Comparisons to a two-dimensional nonlinear unsteady blade/vane Navier–Stokes analysis show good agreement for the 50 percent span results in terms of IGV unsteady surface pressure. The results of the study indicate that significant nonlinear bow shock influences exist on the IGV trailing edge due to the downstream rotor shock system. [S0889-504X(00)00303-2]


Author(s):  
Douglas P. Probasco ◽  
J. Mitch Wolff ◽  
William W. Copenhaver ◽  
Randall M. Chriss

Dynamic loading of an inlet guide vane (IGV) in a transonic compressor is characterized by unsteady IGV surface pressures. This pressure data was acquired for two spanwise locations at a 105% speed operating condition, which produces supersonic relative Mach numbers over the majority of the rotor blade span. The back pressure of the compressor was varied to determine the effects from such changes. Strong bow shock interaction was evident in both experimental and computational results. Variations in the back pressure have significant influence on the magnitude and phase of the upstream pressure fluctuations. The largest unsteady surface pressure magnitude, 40 kPa, was obtained for the near stall mass flow condition at 75% span and 95% chord. Radial variation effects caused by the spanwise variation in relative Mach number were measured. Comparisons to a two-dimensional non-linear unsteady blade/vane Navier-Stokes analysis shows good agreement for the 50% span results in terms of IGV unsteady surface pressure. The results of the study indicate that significant non-linear bow shock influences exist on the IGV trailing edge due to the downstream rotor shock system.


Author(s):  
Carmen E. Kachel ◽  
John D. Denton

This paper presents the results of a numerical and experimental investigation of the unsteady pressure field in a three-stage model of a high pressure steam turbine. Unsteady surface pressure measurements were taken on a first and second stage stator blade respectively. The measurements in the blade passage were supplemented by time resolved measurements between the blade rows. The explanation of the origin of the unsteady pressure fluctuations was supported by unsteady three-dimensional computational fluid dynamic calculations of which the most extensive calculation was performed over two stage. The mechanisms affecting the unsteady pressure field were: the potential field frozen to the upstream blade row, the pressure waves originating from changes in the potential pressure field, the convected unsteady velocity field and the passage vortex of the upstream blade row. One-dimensional pressure waves and the unsteady variation of the pitchwise pressure gradient due to the changing velocity field were the dominant mechanisms influencing the magnitude of the surface pressure fluctuations. The magnitude of these effects had not been previously anticipated to be more important than other recognized effects.


Sign in / Sign up

Export Citation Format

Share Document