Interface broadening due to Ar+ ion bombardment measured on Co/Cu multilayer at grazing angle of incidence

2003 ◽  
Vol 21 (3) ◽  
pp. 553-557 ◽  
Author(s):  
A. Barna ◽  
M. Menyhard ◽  
G. Zsolt ◽  
A. Koos ◽  
A. Zalar ◽  
...  
2005 ◽  
Vol 98 (2) ◽  
pp. 024901 ◽  
Author(s):  
A. Barna ◽  
M. Menyhard ◽  
L. Kotis ◽  
Gy. J. Kovacs ◽  
G. Radnoczi ◽  
...  

2003 ◽  
Vol 21 (1) ◽  
pp. 196-200 ◽  
Author(s):  
A. Barna ◽  
M. Menyhard ◽  
G. Zsolt ◽  
N. Q. Khanh ◽  
A. Zalar ◽  
...  

1995 ◽  
Vol 407 ◽  
Author(s):  
A.-L. Barabási ◽  
R. Cuerno

ABSTRACTRecently a number of experimental studies focusing on the scaling properties of surfaces eroded by ion bombardment provided apparently contradictory results. A number of experiments report the observation of self-affine fractal surfaces, while others provide evidence about the development of a non-fractal periodic ripple structure. To explain these discrepancies, here we derive a stochastic nonlinear equation that describes the evolution and scaling properties of surfaces eroded by ion bombardment. The coefficients appearing in the equation can be calculated explicitly in terms of the physical parameters characterizing the sputtering process. We find that transitions may take place between various scaling behaviors when experimental parameters, such as the angle of incidence of the incoming ions or their average penetration depth, are varied.


1970 ◽  
Vol 25 (11) ◽  
pp. 1567-1578 ◽  
Author(s):  
Max G. Lagally

The intensity of the (00) beam of a (111) surface of Ag has been measured with a Faraday cage as a function of the energy of the incident beam (10 < E < 280 eV), the grazing angle of incidence (46.5° < φ < 83.5°), two azimuths differing by 180°, and the temperature. The I vs E curves, when compared with data for Ag ( 111 ) of other workers who have used different methods of surface preparation, show good agreement in the structure over the whole range of incident angles, indicating that LEED is not strongly sensitive to surface condition. The I vs E curves for the two azimuths are identical, a necessary result of the reciprocity theorem. For comparison with the I vs E structure, a complete 3-beam geometric model is used. This differs from a simple Ewald construction in that it considers also the Bragg conditions between intermediate beams and the final beam. It also requires that there be no difference in the effect of intermediate forward and backward scattered beams. It is shown that the number of possible beams is much too large even at low energies to make positive identification of any structure in the I vs E curves. A comparison with a rigorous multiple-scattering theory yields agreement in the number and position of peaks, but not in heights and widths of peaks. The possibility of comparison of absolute intensities in theory and experiment is investigated and an attempt is made to remove the major differences. Intensity vs temperature measurements are made at closely spaced energies in order to extract the rigid-lattice scattering. Correction of this intensity for surface plasma losses leads finally to maximum scattered intensities of 2% at 100 eV, 10% at 60 eV, and up to 40% at energies below 20 eV.


1993 ◽  
Vol 8 (8) ◽  
pp. 1938-1957 ◽  
Author(s):  
Daniel J. Kester ◽  
Russell Messier

Negative ion bombardment of an evolving thin film can cause changes in the film's surface due to resputtering of the already deposited material. Through the study of rf-sputtered perovskite (BaTiO3) thin films, we have found that surface micro-effects, i.e., changes in the surface morphology of the films at the μm-scale level, are dependent on the deposition conditions. Ripples, cones, ridges, and etch pits of various shapes and sizes were all observed on growing films. A transformation of the morphology of the top surface of the film as a function of both deposition time and location on the substrate has been observed. The type of surface morphology found at any point was found to be dependent on a number of factors, including deposition rates, flux and energy of bombarding ions, and the average angle of incidence of the bombarding ions. We have developed a qualitative model for the formation of these surface features, based on the resputtering yield as a function of the average angle of incidence of the bombarding ions. The model suggests that surface nonuniformities, often ripples, initiate the development of etch pits. Other mechanisms of the surface morphology development (such as clustering) are used to explain the formation of surface features other than etch pits.


1992 ◽  
Vol 268 ◽  
Author(s):  
W. A. Lewis ◽  
H. Saffari ◽  
M. Farle ◽  
E. Kay ◽  
S. B. Hagstrom

ABSTRACTNi films 250 to 1500 Å thick are prepared on polished amorphous quartz substrates in ultrahigh vacuum by ion beam sputter deposition. The growing film is bombarded simultaneously with Xe+ ions at an oblique angle of incidence. The structural and magnetic modifications are studied for different film thicknesses as a function of Xe+ ion energies (50–200 eV) and relative flux of arriving Ni atoms/Xe ions at the substrate. Lattice spacings and degree of texturing are determined by x-ray diffraction. Magnetic in-plane anisotropy is determined by longitudinal magneto-optic Kerr effect measurements. Our results show that an uniaxial in-plane magnetic anisotropy is induced with the hard magnetization direction parallel to the plane of incidence of the secondary Xe+ ions, and a (111) texture with an increased plane spacing of 0.5% is measured. The microstructure of the film and the magnitude of the anisotropy is sensitive to film thickness and flux ratio. For films prepared without secondary ion bombardment, the plane spacings correspond to those for bulk Ni, and isotropic magnetic behavior is observed.


Sign in / Sign up

Export Citation Format

Share Document