Measurement of Schottky barrier height tuning using dielectric dipole insertion method at metal–semiconductor interfaces by photoelectron spectroscopy and electrical characterization techniques

Author(s):  
Brian E. Coss ◽  
Prasanna Sivasubramani ◽  
Barry Brennan ◽  
Prashant Majhi ◽  
Robert M. Wallace ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2019 ◽  
Vol 9 (23) ◽  
pp. 5014
Author(s):  
Courtin ◽  
Moréac ◽  
Delhaye ◽  
Lépine ◽  
Tricot ◽  
...  

Fermi level pinning at metal/semiconductor interfaces forbids a total control over the Schottky barrier height. 2D materials may be an interesting route to circumvent this problem. As they weakly interact with their substrate through Van der Waals forces, deposition of 2D materials avoids the formation of the large density of state at the semiconductor interface often responsible for Fermi level pinning. Here, we demonstrate the possibility to alleviate Fermi-level pinning and reduce the Schottky barrier height by the association of surface passivation of germanium with the deposition of 2D graphene.


1993 ◽  
Vol 300 ◽  
Author(s):  
R. Pereira ◽  
M. Van Hove ◽  
W. De Raedt ◽  
J. Alay ◽  
H. Bender ◽  
...  

The damage introduced by CH4/H2 reactive ion etching (RIE) on Si-doped AlGaAs layers is studied by X-Ray Photoelectron Spectroscopy (XPS), Auger electron spectrocopy (AES) and electrical measurements on Schottky contacts. The XPS analysis of the surface stoichiometry after RIE exposure shows arsenic depletion and adsorbed carbon as the main characteristics. The carbon spectrum consists of a component due to atmospheric contamination and an additional photoelectron peak at 283 eV, which we correlate with the formation of Ga-C radicals at the AlGaAs surface during RIE. The reaction process at the Au/TiW/Ti/AlGaAs interface after RIE exposure and subsequent thermal annealing is monitored by AES. Also by this technique, carbon was detected at the Ti/AlGaAs interface and no interdiffusion was observed. The electrical behaviour of the contacts is characterized by capacitance-voltage (CV) and current-voltage (IV) measurements. Schottky barrier height, ideality factor and reverse breakdown were determined. The barrier height extracted from CV measurements of the samples exposed to RIE shows increased values (1.1 to 1.4 eV) compared to the reference samples (1.0 to 1.1 eV), depending on the aluminium concentration. The same behaviour was observed in the ideality factor. The results are explained by the formation of a p-n junction below the metal/AlGaAs barrier. Good agreement between experimental and theoretical values is found when the compensation of Si donors was taken into account.


MRS Advances ◽  
2016 ◽  
Vol 1 (16) ◽  
pp. 1125-1130 ◽  
Author(s):  
Chao Hu ◽  
Zhangcheng Liu ◽  
Jingwen Zhang ◽  
Wei Wang ◽  
Hong-Xing Wang

ABSTRACTSchottky properties of Mo on diamond with fluorine- and oxygen-termination had been investigated. Oxygen-termination was generated by aqua regia. Fluorine-termination was generated by CF4plasma treatment. Mo/Ni/Au was deposited on the diamond surface as Schottky electrode, whose barrier height was evaluated from current-voltage curve. After that, the X-ray photoelectron spectroscopy methods were applied to calculate the Schottky barrier height of Mo on different termination surface. The results indicated that the fluorine-termination and oxygen-termination show different schottky properties.


2011 ◽  
Vol 98 (16) ◽  
pp. 162111 ◽  
Author(s):  
J. Kováč ◽  
R. Šramatý ◽  
A. Chvála ◽  
H. Sibboni ◽  
E. Morvan ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 597-599 ◽  
Author(s):  
Lin-Lin Wang ◽  
Wu Peng ◽  
Yu-Long Jiang ◽  
Bing-Zong Li

Sign in / Sign up

Export Citation Format

Share Document