scholarly journals X-ray photoelectron spectroscopy: A perspective on quantitation accuracy for composition analysis of homogeneous materials

2020 ◽  
Vol 38 (4) ◽  
pp. 041001 ◽  
Author(s):  
Christopher Richard Brundle ◽  
Bruce Vincent Crist
Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 329
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

This study examines the structure and properties of stainless steel coatings deposited to incorporate large concentrations of nitrogen along with varying amounts of titanium. Deposition was carried out using magnetron co-sputtering of stainless steel and titanium from separate targets in a mixed Ar/N2 gas atmosphere. Composition analysis by X-ray photoelectron spectroscopy showed that while films with up to 4 at.% Ti exhibited little change in nitrogen content (compared to films deposited without Ti) and remained sub-stoichiometric with respect to N content. Films with 7–8 at.% Ti had a higher N level and further increasing the Ti level to 11–12 at.% resulted in stoichiometric N levels. X-ray diffraction showed that the films all had a nominally FCC structure with no additional phases. However, the peak locations for the (111) and (200) reflections indicated a distorted lattice characteristic of the S-phase, with calculated c/a values ranging from 1.007 to 1.033. The Ti additions, along with the corresponding increase in N content, helped reduce the extent of lattice distortion. The film microstructure of the higher (11–12 at.%) Ti films also showed higher density, lower surface roughness, and a finer grain structure. As a result, these films had a higher hardness compared to the sub-stoichiometric films, with hardness levels in the range of 18–23 GPa, typical of transition metal nitrides coatings.


1991 ◽  
Vol 48-49 ◽  
pp. 178-184 ◽  
Author(s):  
A. Ermolieff ◽  
F. Martin ◽  
A. Amouroux ◽  
S. Marthon ◽  
J.F.M. Westendorp

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1012
Author(s):  
Guobao Chen ◽  
Jiarui Sun ◽  
Hongying Yang ◽  
Pengcheng Ma ◽  
Shixiong Gao

With the decrease in high-grade chalcopyrite resources, the copper extraction from low-grade chalcopyrite has attracted more and more attention. However, the kinetic rates of chalcopyrite leaching with traditional oxidants are usually very slow due to the formation of the passivation layer. In this study, a novel reagent of chlorinated oxidant, trichloroisocyanuric acid (TCCA), was used to leach chalcopyrite for the first time. The experimental results showed that when the initial oxidant concentration for TCCA was 0.054 mol·L−1, the leaching temperature was kept at 55 °C, and the pH of the pulp was controlled at 1, the oxidation efficiency of Cu can reach above 90% in less than 30 min. Various analyses of chalcopyrite mineral ore and its oxidized residues, such as chemical composition analysis, X-ray diffraction analysis, scanning electron microscopy analysis and X-ray photoelectron spectroscopy, were conducted, respectively. No obvious passivation layer was found on the chalcopyrite surface, though the sulfur product can also be generated during the leaching. Reaction kinetic analysis results showed that the different influence of surface reaction and diffusion process on the dissolution of chalcopyrite is little due to the fast leaching speed. After calculation, the activation energy of the whole leaching reaction is 9.06 kJ·mol−1, much lower than that in other reports. The mechanism was also proposed that TCCA was hydrolyzed in the solution to form hypochlorous acid, which is the strong oxidant, and cyanuric acid, which prevents the formation of a passivation layer. The processing in this study is expected to be applied as a novel method for atmospheric leaching of chalcopyrite.


MRS Advances ◽  
2020 ◽  
Vol 5 (35-36) ◽  
pp. 1851-1857
Author(s):  
Nikesh Maharjan ◽  
Mim Lal Nakarmi

ABSTRACTDeep UV photoluminescence (PL) spectroscopy was employed to study optical properties of a sapphire substrate sample. The sample was photo-excited by the third harmonic laser of a Ti:sapphire pulse laser at wavelength ~ 266 nm which is a below bandgap excitation. In the low temperature (12 K) PL measurement, we observed two sharp atomic-like emissions in the ultraviolet region with peaks at 3.361 eV and 3.315 eV with spectral line-width of 0.85 and 3.30 nm respectively, in the PL spectrum. We performed temperature and power-dependent PL measurements of the sample and observed that the emission peak positions did not change with changing excitation power and sample temperature. We also performed X-ray photoelectron spectroscopy for chemical composition analysis of the sample to explore the origin of the atomic-like emission that could be used for single photon sources for quantum information technology. We will discuss a possible electronic transition and its origin in sapphire.


1990 ◽  
Author(s):  
Anne ERMOLIEFF ◽  
F. MARTIN ◽  
A. AMOUROUX ◽  
S. MARTHON ◽  
J. F. M WESTENDORP

1997 ◽  
Vol 476 ◽  
Author(s):  
E. Kondoh ◽  
T.P. Nguyen

AbstractCopper films with a small amount of an alloy element (1 wt % Ti) were metallized on polyimide. Plasma pre-treatment of the polyimide surface and post-metallization annealing were used to modify the interface. Interfaces and metal film layers were investigated; a drastic increase in adhesion strength, the suppression of Cu diffusion into polyimide, and the improvement of (111) texture were found. Composition analysis data taken from the interface indicated the accretion of nitrogen at the interface. The formation of Ti-related chemical bonds, suggested by X-ray photoelectron spectroscopy, can explain the above-mentioned experimental results.


Sign in / Sign up

Export Citation Format

Share Document