Heteroepitaxial growth of Si on GaP and GaAs surfaces by remote, plasma enhanced chemical vapor deposition

1994 ◽  
Vol 12 (4) ◽  
pp. 990-994 ◽  
Author(s):  
S. Habermehl ◽  
N. Dietz ◽  
Z. Lu ◽  
K. J. Bachmann ◽  
G. Lucovsky
1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
D.J. Vitkavage ◽  
R.J. Markunas

Heteroepitaxial growth of Ge on Si(100) has been accomplished using remote plasma enhanced chemical vapor deposition at 300*#x00B0;C. Reconstructed surfaces with diffraction patterns showing non-uniform intensity variations along the lengths of the integral order streaks are observed during the first 100 Å of deposit. This observation of an atomically rough surface during the initial stages of growth is an indication of three-dimensional growth. As the epitaxial growth proceeds, the diffraction patterns become uniform with extensive streaking on both the integral and fractional order streaks. Subsequent growth, therefore, takes place in a layer-by-layer, two-dimensional mode. X-ray photoelectron spectroscopy of the early nucleation stages, less than 80 Å, show that there is uniform coverage with no evidence of island formation.


1994 ◽  
Vol 363 ◽  
Author(s):  
Yan Chen ◽  
Jun Mei ◽  
Qijin Chen ◽  
Zhangda Lin

AbstractDiamond have been deposited rapidly under low pressures (<0.1 Torr) via hot filament chemical vapor deposition (HFCVD) on either scratched or mirror-smooth single crystalline silicon and titanium with nucleation densities of 109–1011/cm2. The nucleation density increases with the pressure decreases. Hydrogen and methane were used as the gaseous source. Raman spectroscopy and scanning electron microscopy(SEM) were used to analyze the obtained films. This result breaks through the limit that diamond film can only be synthesized above 10 Torr, showing a promising prospect that, as is essential for heteroepitaxial growth of monocrystalline diamond films, diamond film can be easily nucleated on unscratched substrate via Hot Filament CVD.


2007 ◽  
Vol 22 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Y. Morikawa ◽  
M. Hirai ◽  
A. Ohi ◽  
M. Kusaka ◽  
M. Iwami

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface


1995 ◽  
Vol 377 ◽  
Author(s):  
G. Stevens ◽  
P. Santos-Filho ◽  
S. Habermehl ◽  
G. Lucovsky

ABSTRACTWe have deposited Si-nitride thin films by remote plasma-enhanced chemical-vapor deposition using different combinations of hydrogen and deuterium source gases. In one set of experiments, NH3 and SiH4 were injected downstream from a He plasma and the ratio of NH3 to SiH4 was adjusted so that deposited films contained IR-detectable bonded-H in SiN-H arrangements, but not in Si-H arrangements. Similar results were obtained using the same ND3 to SiD4 flow ratio; these films contained only SiN-D groups. However, films prepared from ND3 and SiH4 displayed both SiN-D and SiN-H groups in essentially equal concentrations establishing that H and D atoms bonded to N are derived from both source gases SiH (D) 4 and NH (D) 3, and further that inter-mixing of H and/or D atoms occurs at the growth surface. This reaction pathway is supported by additional studies in which films were grown from SD4 and ND3 with either i) He or ii) He/H2 mixtures being plasma excited. The films grown from the deuterated source gases without H2, displayed only SiN-D bands, whereas the films grown using the He/H2 mixture displayed both SiN-H and SiN-D bands. The total concentration of N-H and N-D bonds in the films grown from the He/H2 excitation was the same as the concentration of N-D, supporting the surface reaction model. In-situ mass spectrometry provides additional insights in the film deposition reactions.


Sign in / Sign up

Export Citation Format

Share Document