scholarly journals Dither removing Fourier ptychographic microscope based on a two-axis rotation stage

2021 ◽  
Vol 26 (03) ◽  
Author(s):  
Kaicheng Huang ◽  
Wangwei Hui ◽  
Qing Ye ◽  
Hongyang Zhao ◽  
Qiushuai Shi ◽  
...  
Keyword(s):  
2020 ◽  
Vol 2020 (5) ◽  
pp. 60401-1-60401-8
Author(s):  
Shuhei Watanabe

The quantification of material appearance is important in product design. In particular, the sparkle impression of metallic paint used mainly for automobiles varies with the observation angle. Although several evaluation methods and multi-angle measurement devices have been proposed for the impression, it is necessary to add more light sources or cameras to the devices to increase the number of evaluation angles. The present study constructed a device that evaluates the multi-angle sparkle impression in one shot and developed a method for quantifying the impression. The device comprises a line spectral camera, light source, and motorized rotation stage. The quantification method is based on spatial frequency characteristics. It was confirmed that the evaluation value obtained from the image recorded by the constructed device correlates closely with a subjective score. Furthermore, the evaluation value is significantly correlated with that obtained using a commercially available evaluation device.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2006 ◽  
Vol 65 (6) ◽  
pp. 429-439 ◽  
Author(s):  
Keisuke Kushiro ◽  
Jun Maruta

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4910
Author(s):  
Xiaoqiao Yuan ◽  
Jie Li ◽  
Xi Zhang ◽  
Kaiqiang Feng ◽  
Xiaokai Wei ◽  
...  

Rotation modulation (RM) has been widely used in navigation systems to significantly improve the navigation accuracy of inertial navigation systems (INSs). However, the traditional single-axis rotation modulation cannot achieve the modulation of all the constant errors in the three directions; thus, it is not suitable for application in highly dynamic environments due to requirements for high precision in missiles. Aiming at the problems of error accumulation and divergence in the direction of rotation axis existing in the traditional single-axis rotation modulation, a novel rotation scheme is proposed. Firstly, the error propagation principle of the new rotation modulation scheme is analyzed. Secondly, the condition of realizing the error modulation with constant error is discussed. Finally, the original rotation modulation navigation algorithm is optimized for the new rotation modulation scheme. The experiment and simulation results show that the new rotation scheme can effectively modulate the error divergence of roll angle and improve the accuracy of roll angle by two orders of magnitude.


2021 ◽  
Vol 11 (10) ◽  
pp. 4357
Author(s):  
Toby Nonnenmacher ◽  
Titus-Stefan Dascalu ◽  
Robert Bingham ◽  
Chung Lim Cheung ◽  
Hin-Tung Lau ◽  
...  

An electron plasma lens is a cost-effective, compact, strong-focusing element that can ensure efficient capture of low-energy proton and ion beams from laser-driven sources. A Gabor lens prototype was built for high electron density operation at Imperial College London. The parameters of the stable operation regime of the lens and its performance during a beam test with 1.4 MeV protons are reported here. Narrow pencil beams were imaged on a scintillator screen 67 cm downstream of the lens. The lens converted the pencil beams into rings that show position-dependent shape and intensity modulation that are dependent on the settings of the lens. Characterisation of the focusing effect suggests that the plasma column exhibited an off-axis rotation similar to the m=1 diocotron instability. The association of the instability with the cause of the rings was investigated using particle tracking simulations.


Foot & Ankle ◽  
1989 ◽  
Vol 9 (4) ◽  
pp. 194-200 ◽  
Author(s):  
Arne Lundberg ◽  
Ian Goldie ◽  
Bo Kalin ◽  
Göran Selvik

In an in vivo investigation of eight healthy volunteers, three dimensional ankle/foot kinematics were analyzed by roentgen stereophotogrammetry in 10° steps of motion from 30° of plantar flexion to 30° of dorsiflexion of the foot. The study included all of the joints between the tibia and the first metatarsal, as well as the talocalcaneal joint, and was performed under full body load. Although the talocrural joint was found to account for most of the rotation around the transverse axis occurring from 30° of plantar flexion to 30° of dorsiflexion, there was a substantial contribution from the joints of the arch. This was seen particularly in the input arc from 30° of plantar flexion to the neutral position, where the dorsiflexion motion of these joints amounted to 10% to 41% of the total transverse axis rotation.


2006 ◽  
Vol 2 (S236) ◽  
pp. 167-176 ◽  
Author(s):  
Petr Pravec ◽  
A. W. Harris ◽  
B. D. Warner

AbstractOf the nearly 3900 near-Earth asteroids (NEAs) known as of June 2006, 325 have estimated rotation periods, with most of those determined by lightcurve analysis led by a few dedicated programs. NEAs with diameters down to 10 meters have been sampled. Observed spin distribution shows a major changing point around diameter of 200 meters. Larger NEAs show a barrier against spins faster than 11 d−1 (period about 2.2 h) that shifts to slower rates (longer periods) with increasing lightcurve amplitude (i.e., with increasing equatorial elongation). The spin barrier is interpreted as a critical spin rate for bodies in a gravity regime; NEAs larger than 200 meters are predominantly bodies with tensile strength too low to withstand a centrifugal acceleration for rotation faster than the critical spin rate. The cohesionless spin barrier disappears at sizes less than 200 meters where most objects rotate too fast to be held together by self-gravitation only, so a cohesion is implied in the smaller NEAs.The distribution of NEA spin rates in the cohesionless size range (D0.2 km) is highly non-Maxwellian, suggesting that mechanisms other than just collisions have been at work. There is a pile up just in front of the barrier, at periods 2–3 h. It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is observed at periods longer than 30 hours. A spin-down mechanism has no obvious lower limit on spin rate; periods as long as tens of days have been observed.Most NEAs appear to be in their basic spin states with rotation around principal axis with maximum moment of inertia. Tumbling objects (i.e., bodies in excited, non-principal axis rotation) are present and actually predominate among slow rotators with estimated damping timescales longer than the age of the solar system. A few tumblers observed among fast rotating coherent objects appear to be either more rigid or younger than the larger (cohesionless) tumblers.An abundant population of binary systems has been found among NEAs. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 ± 4%. Primaries of binary systems concentrate at fast spin rates (periods 2–3 h) and low amplitudes, i.e., they lie just below the cohesionless spin barrier. The total angular momentum content in binary systems suggests that they formed from parent bodies spinning at the critical rate. The fact that a very similar population of binaries has been found among small main belt asteroids suggests a binary formation mechanism that may not be related to close encounters with the terrestrial planets.


Sign in / Sign up

Export Citation Format

Share Document